首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The authors report theoretical results on structure, bonding, energy, and infrared spectra of iodine dimer radical anion hydrated clusters, I(2) (-).nH(2)O (n=1-8), based on a systematic study following density functional theory. Several initial guess structures are considered for each size cluster to locate minimum energy conformers with a Gaussian 6-311++G(d,p) split valence basis function (triple split valence 6-311 basis set is applied for iodine). It is observed that three different types of hydrogen bonded structures, namely, symmetrical double hydrogen bonding, single hydrogen bonding, and interwater hydrogen bonding structures, are possible in these hydrated clusters. But conformers having interwater hydrogen bonding arrangements are more stable compared to those of double or single hydrogen bonded structures. It is also noticed that up to four solvent H(2)O units can reside around the solute in interwater hydrogen bonding network. At the maximum six H(2)O units are independently linked to the dimer anion having four double hydrogen bonding and two single hydrogen bonding, suggesting the hydration number of I(2) (-) to be 6. However, conformers having H(2)O units independently linked to the iodine dimer anion are not the most stable structures. In all these hydrated clusters, the odd electron is found to be localized over two I atoms and the two atoms are bound by a three-electron hemi bond. The solvation, interaction, and vertical detachment energies are calculated for all I(2) (-).nH(2)O clusters. Energy of interaction and vertical detachment energy profiles show stepwise saturation, indicating geometrical shell closing in the hydrated clusters, but solvation energy profile fails to show such behavior. A linear correlation is observed between the calculated energy of interaction and vertical detachment energy. It is observed that formation of I(2) (-)-water cluster induces significant shifts from the normal O-H stretching modes of isolated H(2)O. However, bending mode of H(2)O remains insensitive to the successive addition of solvent H(2)O units. Weighted average energy profiles and IR spectra are reported for all the hydrated clusters based on the statistical population of individual conformers at room temperature.  相似文献   

2.
We present the results of a detailed study on structure and electronic properties of hydrated cluster Cl2*-.nH2O (n = 1-7) based on a nonlocal density functional, namely, Becke's [J. Chem. Phys. 98, 1372 (1993)] half and half hybrid exchange-correlation functional with a split valence 6-311++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with various possible initial guess structures without any symmetry restriction. Several minimum energy structures (conformers) are predicted with a small difference in total energy. There is a competition between the binding of solvent H2O units with Cl2*- dimer radical anion directly through ion-molecule interaction and forming interwater hydrogen-bonding network in Cl2*-.nH2O (n > or = 2) hydrated cluster. Structure having interwater H-bonded network is more stable over the structure where H2O units are connected to the solute dimer radical anion Cl2*- rather independently either by single or double H bonding in a particular size (n) of hydrated cluster Cl2*-.nH2O. At the maximum four solvent H2O units reside in interwater H-bonding network present in these hydrated clusters. It is observed that up to six H2O units are independently linked to the anion having four double H bondings and two single H bondings suggesting the primary hydration number of Cl2*- to be 6. In all these clusters, the odd electron is found to be mostly localized over the two Cl atoms and these two atoms are bound by a three-electron hemibond. Calculated interaction (between solute and different water clusters) and vertical detachment energy profiles show saturation at n = 6 in the hydrated cluster Cl2*-.nH2O (n = 1-7). However, calculated solvation energy increases with the increase in number of solvent H2O molecules in the cluster. Interaction energy varies linearly with vertical detachment energy for the hydrated clusters Cl2*-.nH2O (n < or = 6). Calculation of the vibration frequencies show that the formation of Cl2*(-)-water clusters induces significant shifts from the normal stretching modes of isolated water. A clear difference in the pattern of IR spectra is observed in the O-H stretching region of water from hexa- to heptahydrated cluster.  相似文献   

3.
Structure and properties of hydrated clusters of halogen gas, X2.nH2O (X = Cl, Br, and I; n = 1-8) are presented following first principle based electronic structure theory, namely, BHHLYP density functional and second-order Moller-Plesset perturbation (MP2) methods. Several geometrical arrangements are considered as initial guess structures to look for the minimum energy equilibrium structures by applying the 6-311++G(d,p) set of the basis function. Results on X2-water clusters (X = Br and I) suggest that X2 exists as a charge separated ion pair, X+delta-X-delta in the hydrated clusters, X2.nH2O (n > or = 2). Though the optimized structures of Cl2.nH2O clusters look like X2.nH2O (X = Br and I) clusters, Cl2 does not exist as a charge separated ion pair in the presence of solvent water molecules. The calculated interaction energy between X2 and solvent water cluster increases from Cl2.nH2O to I2.nH2O clusters, suggesting solubility of gas-phase I2 in water to be a maximum among these three systems. Static and dynamic polarizabilities of hydrated X2 clusters, X2.nH2O, are calculated and observed to vary linearly with the size (n) of these water clusters with correlation coefficient >0.999. This suggests that the polarizability of the larger size hydrated clusters can be reliably predicted. Static and dynamic polarizabilities of these hydrated clusters grow exponentially with the frequency of an external applied field for a particular size (n) of hydrated cluster.  相似文献   

4.
A working methodology to generate theoretical IR spectra following ab initio electronic structure methods is reported. Theoretical IR spectra of Cl(2)(?-)·nH(2)O clusters (n = 1-5) are generated as a case study. Excellent agreement between the calculated and the reported experimental IR spectra based on size-selected spectroscopy is observed. It is shown that uniform scaling of calculated harmonic frequencies of these hydrated clusters fail to produce accurate IR spectra. Two different scaling factors in two different regions of O-H stretching of solvent water molecules are needed to account for the anharmonic contribution. This observation is also true for Br(2)(?-)·nH(2)O and I(2)(?-)·nH(2)O systems.  相似文献   

5.
A systematic study on the structure and stability of nitrate anion hydrated clusters, NO3(-) x n H2O (n = 1-8) are carried out by applying first principle electronic structure methods. Several possible initial structures are considered for each size cluster to locate equilibrium geometry by applying a correlated hybrid density functional with 6-311++G(d,p) basis function. Three different types of arrangements, namely, symmetrical double hydrogen bonding, single hydrogen bonding and inter-water hydrogen bonding are obtained in these hydrated clusters. A structure having inter-water hydrogen bonding is more stable compared to other arrangements. Surface structures are predicted to be more stable over interior structures. Up to five solvent H2O molecules can stay around solute NO3(-) anion in structures having an inter-water hydrogen-bonded cyclic network. A linear correlation is obtained for weighted average solvent stabilization energy with the size (n) of the hydrated cluster. Distinctly different shifts of IR bands are observed in these hydrated clusters for different kinds of bonding environments of O-H and N=O stretching modes compared to isolated H2O and NO3(-) anion. Weighted average IR spectra are calculated on the basis of statistical population of individual configurations of each size cluster at 150 K.  相似文献   

6.
We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.  相似文献   

7.
Structure, energy enthalpy, and IR frequency of hydrated cesium ion clusters, Cs+-(H2O)n (n=1-10), are reported based on all electron calculations. Calculations have been carried out with a hybrid density functional, namely, Becke's three-parameter nonlocal hybrid exchange-correlation functional B3LYP applying cc-PVDZ correlated basis function for H and O atoms and a split valence 3-21G basis function for Cs atom. Geometry optimizations for all the cesium ion-water clusters have been carried out with several possible initial guess structures following Newton-Raphson procedure leading to many conformers close in energy. The calculated values of binding enthalpy obtained from present density functional based all electron calculations are in good agreement with the available measured data. Binding enthalpy profile of the hydrated clusters shows a saturation behavior indicating geometrical shell closing in hydrated structure. Significant shifts of O-H stretching bands with respect to free water molecule in IR spectra of hydrated clusters are observed in all the hydrated clusters.  相似文献   

8.
The electron binding energies of the small hydrated amino acid anions, [glycine x (H2O)(1,2)]-, are determined using photoelectron spectroscopy. The vertical electron detachment energies (VDEs) are found to increase by approximately 0.12 eV with each additional water molecule such that the higher electron binding isomer of the dihydrate is rather robust, with a VDE value of 0.33 eV. A weak binding isomer of the dihydrate is also recovered, however, with a VDE value (0.14 eV) lower than that of the monohydrate. Unlike the situation in the smaller (n < or = 13) water cluster anions, the [Gly x (H2O)(n > or = 6)]- clusters are observed to photodissociate via water monomer evaporation upon photoexcitation in the O-H stretching region. We discuss this observation in the context of the mechanism responsible for the previously observed [S. Xu, M. Nilles, and K. H. Bowen, Jr., J. Chem. Phys. 119, 10696 (2003)] sudden onset in the cluster formation at [Gly x (H2O)5]-.  相似文献   

9.
Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO3.?.n H2O (n=1–8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second‐order Moller–Plesset perturbation (MP2) and coupled cluster theory using the 6‐311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO3.?.n H2O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time‐dependent density functional theory using the Becke three‐parameter nonlocal exchange and the Lee–Yang–Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO3.?.8 H2O cluster is in excellent agreement with the reported experimental spectrum for CO3.? (aq), obtained based on pulse radiolysis experiments.  相似文献   

10.
We present benchmark calculations of vertical electron detachment energies (VDEs) for various conformers of (H2O)n-, using both wave function and density functional methods, in sequences of increasingly diffuse Gaussian basis sets. For small clusters (n < or = 6), a systematic examination of VDE convergence reveals that it is possible to converge this quantity to within approximately 0.01 eV of the complete-basis limit, using a highly diffuse but otherwise economical Pople-style basis set of double-zeta quality, with 28 atom-centered basis functions per water molecule. Floating-center basis functions can be useful but are not required to obtain accurate VDEs. Second-order M?ller-Plesset perturbation (MP2) theory suffices to obtain VDEs that are within 0.05 eV of the results from both experiment and coupled-cluster theory, and which always err toward underbinding the extra electron. In contrast to these consistent predictions, VDEs calculated using density functional theory (DFT) vary widely, according to the fraction of Hartree-Fock exchange in a given functional. Common functionals such as BLYP and B3LYP overestimate the VDE by 0.2-0.5 eV, whereas a variant of Becke's "half and half" functional is much closer to coupled-cluster predictions. Exploratory calculations for (H2O)20- and (H2O)24- cast considerable doubt on earlier calculations that were used to assign the photoelectron spectra of these species to particular cluster isomers.  相似文献   

11.
The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine‐dimer radical‐anion clusters, I2.? ? n H2O (n=1–10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum‐energy structure by applying a Monte Carlo simulated annealing procedure including spin–orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I? I stretching band but enhances the intensity of the O? H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O? H bonds in a cyclic water network are observed for I2.? ? n H2O clusters with n≥3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite‐size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I2.? in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl2.? and Br2.?.  相似文献   

12.
The structure of dibenzo-18-crown-6-ether (DB18C6) and its hydrated clusters has been investigated in a supersonic jet. Two conformers of bare DB18C6 and six hydrated clusters (DB18C6-(H(2)O)(n)) were identified by laser-induced fluorescence, fluorescence-detected UV-UV hole-burning and IR-UV double-resonance spectroscopy. The IR-UV double resonance spectra were compared with the IR spectra obtained by quantum chemical calculations at the B3LYP/6-31+G* level. The two conformers of bare DB18C6 are assigned to "boat" and "chair I" forms, respectively, among which the boat form is dominant. All the six DB18C6-(H(2)O)(n) clusters with n = 1-4 have a boat conformation in the DB18C6 part. The water molecules form a variety of hydration networks in the boat-DB18C6 cavity. In DB18C6-(H(2)O)(1), a water molecule forms the bidentate hydrogen bond with the O atoms adjacent to the benzene rings. In this cluster, the water molecule is preferentially hydrogen bonded from the bottom of boat-DB18C6. In the larger clusters, the hydration networks are developed on the basis of the DB18C6-(H(2)O)(1) cluster.  相似文献   

13.
Structures, energetics, and spectra of Br(-).nCO(2) (n = 1-8) clusters are studied based on ab initio electronic structure theory. The geometry of each size of clusters is evaluated by employing second-order Moller-Plesset (MP2) perturbation theory. It is observed that the solvent CO(2) molecules approach the bromide moiety from one side in an asymmetric fashion except for the Br(-).8CO(2) cluster. Simple electrostatic model for charge-quadrupole interactions is valid for the Br(-).nCO(2) clusters. Reduced variational space based energy decomposition method shows that the electrostatic interaction is the major component and polarization and charge transfer energies are the other significant components of the total interaction energy. Both adiabatic and vertical electron detachment energies and solvation energies are calculated at MP2 level of theory. We have observed an excellent agreement between theory and experiment for the vertical detachment and solvation energies. Calculated quantities based on the analytical expression which connects the finite domain to macroscopic one are found to be very good in agreement with the available experimental results. The present study reveals a 2.6 eV increase in the detachment energy of bromide anion due to the solvation effect of CO(2), which is relatively small compared to that of the corresponding 4.7 eV increase in detachment energy in water.  相似文献   

14.
Structure, stability, and vibrational IR and Raman spectra of I(2)(*-) x nCO(2) clusters (n = 1-10) are reported based on first-principle electronic structure calculations. Several close-lying minimum energy structures are predicted for these solvated clusters following the quasi Newton-Raphson procedure of geometry optimization. Search strategy based on Monte-Carlo simulated annealing is also applied to find out the global minimum energy structures of these clusters. Successive addition of solvent CO(2) molecules to the negatively charged diatomic solute, I(2)(*-), is fairly symmetrical. Energy parameters of these solvated clusters are calculated following second-order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311+G(d) set of basis function (I atom is treated with 6-311G(d) set of basis function). The excess electron in these solvated clusters is observed to be localized mainly over the two I atoms. Average interaction energy between the anionic solute, I(2)(*-), and a solvent CO(2) molecule is approximately 129 meV in I(2)(*-) x nCO(2) clusters, and the average interaction energy between two solvent CO(2) molecules is approximately 85 meV in the case of neutral (CO(2))(n) clusters at MP2 level of theory. IR spectra show similar features in all these solvated clusters, depicting a strong band at approximately 2330 cm(-1) for C-O stretching and a weak band at approximately 650 cm(-1) for CO(2) bending modes. Degeneracy of the bending mode of a free solvent CO(2) unit gets lifted when it interacts with the charged solute I(2)(*-) to form a molecular cluster because of the change in structure of solvent CO(2) units. The vibrational band at the bending region of CO(2) in the Raman spectra of these anionic clusters shows a characteristic feature for the formation of I(2)(*-) x nCO(2) clusters showing a Raman band at approximately 650 cm(-1).  相似文献   

15.
Binding interactions and Raman spectra of water in hydrogen-bonded anionic complexes have been studied by using the hybrid density functional theory method (B3LYP) and ab initio (MP2) method. In order to explore the influence of hydrogen bond interactions and the anionic effect on the Raman intensities of water, model complexes, such as the negatively charged water clusters ((H2O)n-, n = 2 and 3), the water...halide anions (H2O...X-, X = F, Cl, Br, and I), and the water-metal atom anionic complexes (H2O...M-, M = Cu, Ag, and Au), have been employed in the present calculations. These model complexes contained different types of hydrogen bonds, such as O-H...X-, O-H...M-, O-H...O, and O-H...e-. In particular, the last one is a dipole-bound electron involved in the anionic water clusters. Our results showed that there exists a large enhancement in the off-resonance Raman intensities of both the H-O-H bending mode and the hydrogen-bonded O-H stretching mode, and the enhancement factor is more significant for the former than for the latter. The reasons for these spectral properties can be attributed to the strong polarization effect of the proton acceptors (X-, M-, O, and e-) in these hydrogen-bonded complexes. We proposed that the strong Raman signal of the H-O-H bending mode may be used as a fingerprint to address the local microstructures of water molecules in the chemical and biological systems.  相似文献   

16.
The laser-induced fluorescence spectra of jet-cooled benzo-18-crown-6 (B18C6) and dibenzo-18-crown-6 (DB18C6) exhibit a number of vibronic bands in the 35 000-37 000 cm(-1) region. We attribute these bands to monomers and hydrated clusters by fluorescence-detected IR-UV and UV-UV double resonance spectroscopy. We found four and two conformers for bare B18C6 and DB18C6, and the hydration of one water molecule reduces the number of isomers to three and one for B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1), respectively. The IR-UV spectra of B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) suggest that all isomers of the monohydrated clusters have a double proton-donor type (bidentate) hydration. That is, the water molecule is bonded to B18C6 or DB18C6 via two O-H[dot dot dot]O hydrogen bonds. The blue shift of the electronic origin of the monohydrated clusters and the quantum chemical calculation suggest that the water molecule in B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) prefers to be bonded to the ether oxygen atoms near the benzene ring.  相似文献   

17.
The structure and stability for the association of water with dimethyl sulfoxide (DMSO) are investigated using the density functional M06‐2X level theory. Stable complexes are formed by the formation of hydrogen bonding between water and oxygen atom of DMSO molecule, while the electrostatic force between water and DMSO plays a vital role in deciding the structure. The water‐DMSO interactions are stronger than the interwater hydrogen bonds, which can be inferred from the shorter DMSO‐water bond distance compared with the water–water bond distance. The calculated solvent association energy does not saturate, and it remains favorable to attach additional water molecules to the existing water network. The calculated IR spectra shifts supports the formation stronger hydrogen bonding, while the electrostatic potential (ESP) plot supports the existence of weaker electrostatic interaction in the studied clusters. The polarizabilities for the ground state clusters were found to increase monotonically with the cluster size. The presence of additional electrostatic bonding between water and DMSO, devastates the linear hydrogen‐bonding network. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
To understand the mechanism of aqueous acid dissociation, which plays a fundamental role in aqueous chemistry, the ionic dissociation of HX acids (X=F, Cl, Br, and I) in water clusters up to hexamer is examined using density functional theory and M?ller-Plesset second-order perturbation methods (MP2). Further accurate analysis based on the coupled clusters theory with singles and doubles excitations agrees with the MP2 results. The equilibrium structures, binding energies, electronic properties, stretching frequencies, and rotational constants of HX(H(2)O)(n) and X(-)(H(3)O)(+)(H(2)O)(n-1) are calculated. The dissociated structures of HF and HCl can be formed for n>/=4, while those of HBr and HI can be formed for n>/=3. Among these, the dissociated structures of HX (X=Cl, Br, and I) are more stable than the undissociated ones for n>/=4, while such cases for HF would require much more than six water molecules, in agreement with previous reports. The IR spectra of stable clusters including anharmonic frequencies are predicted to facilitate IR experimental studies. Undissociated systems have X-H stretching modes which are highly redshifted by hydration. Dissociated hydrogen halides show three characteristic OH stretching modes of hydronium moiety, which are redshifted from the OH stretching modes of water molecules.  相似文献   

19.
Vertical electron detachment energies (VDEs) are calculated for a variety of (H(2)O)(n)(-) and (HF)(n)(-) isomers, using different electronic structure methodologies but focusing in particular on a comparison between second-order M?ller-Plesset perturbation theory (MP2) and coupled-cluster theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small (H(2)O)(n)(-) clusters (n< or = 7), the correlation energy associated with the unpaired electron grows linearly as a function of the VDE but is unrelated to the number of monomers, n. In every example considered here, including strongly-bound "cavity" isomers of (H(2)O)(24)(-), the correlation energy associated with the unpaired electron is significantly smaller than that associated with typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the CCSD(T) value, approaches a limit of about -7% for (H(2)O)(n)(-) clusters with VDEs larger than about 0.4 eV. CCSD(T) detachment energies are bounded from below by MP2 values and from above by VDEs calculated using second-order many-body perturbation theory with molecular orbitals obtained from density functional theory. For a variety of both strongly- and weakly-bound isomers of (H(2)O)(20)(-) and (H(2)O)(24)(-), including both surface states and cavity states, these bounds afford typical error bars of +/-0.1 eV. We have found only one case where the Hartree-Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds lie 0.4 eV apart, and second-order perturbation theory may not be reliable.  相似文献   

20.
The isomers of (H(2)O)(24) (-) tetrakaidecahedral cluster are studied by applying the Becke-3-parameter density functional theory and Lee-Yang-Parr correlation functional (B3LYP) and 6-311++G** basis set. Three isomers are selected on the basis of stabilization energy values. The vertical electron dissociation energies (VDE) of these isomers are 1.353, 0.404, and 0.258 eV, respectively. The experimental VDE value of 1.31 eV [J. Chem. Phys. 92, 3980 (1990)] for this cluster size is in excellent agreement with that calculated for isomer 1, suggesting the dominance of this isomer in the experiment. Four water molecules in this isomer share most of the -1 charge. These four water molecules have non-H-bonding H (NHB H) atoms turned toward the cavity, and the inward turned H atoms exhibit a significant lowering of O-H stretch frequency compared to that of a monomer. Isomers 2 and 3 have all 12 NHB H atoms projected outward and have the -1 charge distributed among 7-8 water molecules on the cluster surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号