首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Abstract  

Aerobic oxidation of 2-methoxy-6-(1-methylethyl)naphthalene to hydroperoxide, alcohol, and ketone, is reported. These compounds, particularly 2-acetyl-6-methoxynaphthalene, are important intermediates in naproxen synthesis. N-Hydroxyphthalimide is shown here to be an efficient catalyst for oxidation to the hydroperoxide, 2-methoxy-6-(1-hydroperoxy-1-methylethyl)naphthalene, with a yield of 87%. However, the ketone and alcohol were obtained with lower yields, with a maximum yield of 13% for the ketone and 27% for the alcohol, using N-hydroxyphthalimide and Cu(II) acetylacetonate as a catalyst. The synthesis of the products 2-acetyl-6-methoxynaphthalene and 2-methoxy-6-(1-hydroxy-1-methylethyl)naphthalene via an initial oxidation step to the hydroperoxide followed by a hydroperoxide decomposition step is shown to be more efficient; the ketone and alcohol were obtained from 2-methoxy-6-(1-methylethyl)naphthalene with yields of 40 and 56%, respectively.  相似文献   

2.
E.A. Jaseer 《Tetrahedron letters》2010,51(38):5009-5012
A wide range of 2-aryl or 2-alkyl-substituted benzothiazoles are synthesized through intramolecular C(aryl)-S bond forming-cyclization using copper(II)-BINAM-catalyzed coupling of less reactive N-(2-chlorophenyl)benzo or alkylthioamide under mild reaction conditions (82 °C).  相似文献   

3.
Yasuhiro Aoki 《Tetrahedron》2005,61(46):10995-10999
The first systematic study on the aerobic oxidation of 1,3,5-triisopropylbenzene was examined by the use of N-hydroxyphthalimide (NHPI) as a key catalyst. It was found that 1,3,5-triisopropylbenzene was efficiently oxidized with O2 in the presence of a catalytic amount of NHPI and azobisisobutyronitrile (AIBN) at 75 °C. Upon treatment of the resulting products with sulfuric acid followed by acetic anhydride led to 5-acetoxy-1,3-diisopropylbenzene and 3,5-diacetoxy-1-isopropylbenzene as major products and a small amount of 1,3,5-triacetoxybenzene. When t-butylperoxypivalate (BPP) was employed as a radical initiator, the oxidation could be achieved in good yield even at 50 °C. This oxidation provides a facile method for preparing phenol derivatives bearing an isopropyl moiety, which can be used as pharmaceutical starting materials.  相似文献   

4.
Five copper(II) complexes with N(4)-ortho, N(4)-meta and N(4)-para-tolyl thiosemicarbazones derived from 2-formyl and 2-acetylpyridine were obtained and thoroughly characterized. The crystal structure of N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone (H2Ac4mT) was determined, as well as that of its copper(II) complex [Cu(2Ac4mT)Cl], which contains an anionic ligand and a chloride in the coordination sphere of the metal. The in vitro antimicrobial activities of all thiosemicarbazones and their copper(II) complexes were tested against Salmonella typhimurium and Candida albicans. Upon coordination a substantial decrease in the minimum inhibitory concentration, from 225 to 1478 μmol L−1 for the thiosemicarbazones to 5–30 μmol L−1 for the complexes was observe against the growth of Salmonella typhimurium and from 0.7–26 to 0.3–7 μmol L−1 against the growth of C. albicans, suggesting that complexation to copper(II) could be an interesting strategy of dose reduction.  相似文献   

5.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

6.
Most products formed on polyethylene oxidation result from hydroperoxide decomposition. The product yields can be calculated for various mechanisms of hydroperoxide decomposition. This work concerns the reaction of a hydroperoxide with an alcohol group thought to be dominant in the advanced stages of polyethylene processing in the high temperature range (170-200 °C). Besides hydrogen abstraction by caged alkoxy radicals already envisaged previously, the possibility of β-scission is taken into account. This additional reaction introduces significant complexity into the reaction schemes. This is especially so because additional caged radical pairs must be included into the schemes and the calculations. It becomes possible to calculate the yields of aldehyde and vinyl groups that do not result from hydroperoxide decomposition in the absence of β-scission. The yields of the main oxidation products such as alcohols and ketones are not much affected by taking into account β-scission. The yield of aldehydes is important in the whole temperature range and increases considerably if the temperature is raised from 170 to 200 °C. It becomes more important than the ketone yield. The vinyl groups are formed in amounts corresponding roughly to 10-15% of the trans-vinylene groups in the temperature range of 170-200 °C.  相似文献   

7.
The structure of the crystalline azamacrocyclic product formed by reaction of bis(propane-1,3-diamine)copper(II) perchlorate with acetone has been determined as N-rac-(6,8,8,14,16,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,13-diene)copper(II) · N-meso-(6,8,8,14,14,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,16(1)-diene)copper(II) perchlorate, with the cis, 5,16(1)-diene, and trans, 5,13-diene, isomeric cations co-crystallised. The structures of three compounds crystallised from solutions of this mixture have been determined. N-rac-(6,8,8,14,14,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,16(1)-diene)copper(II) tetrachlorozincate has an irregular flattened tetrahedral coordination geometry with trans-N-Cu-N angles of 139.27(8)° and 155.94(8)°. (Hexamethyl-1,5,9,13-tetraazacyclohexadecadiene)(thiocyanato-N)copper(II) perchlorate has twofold symmetrical square-pyramidal cations. A (μ-cyano)-tetracyanonickelate(II) compound has two (hexamethyl-1,5,9,13-tetraazacyclohexadecadiene)copper(II) cations each with a single axially coordinated tetracyanonickelate(II) group. The compounds, except for the tetrachlorozincate(II) salt, show disorder in the location of the imine functions and axial methyl substituents, attributed to co-crystallisation of enantiomers for the N-rac-trans isomer and/or of rotated arrangements of the N-meso-cis isomer. For the thiocyanato and tetracyanonickelato compounds this disorder precluded unambiguous assignment of configuration.  相似文献   

8.
A facile synthesis of poly(lauryl acrylate) has been achieved by atom transfer radical polymerization using benzyl-2-bromoisobutyrate, copper (I) bromide, and N-(n-octyl)-2-pyridylmethanimine (OPMI). The latter was of great interest as its synthesis was very easy to carry out and as it allowed the reaction mixture to be homogeneous, which was essential for the control of the reaction. The polymerization was controlled under these conditions and was optimized with the addition of copper (II) bromide as deactivator. We proved that the synthesis of poly(lauryl acrylates) with well defined molecular weights and narrow polydispersities was possible using a ligand which does not require difficult synthesis and purification. We also showed the ability of pyridylmethanimine ligands to control ATRP of an acrylate derivative. Best results were obtained at 130 °C in xylene for [Initiator]0/[Cu(I)Br]0/[Cu(II)Br2]0/[OPMI]/[lauryl acrylate] equal to 1/1/0.05/2.2/181, respectively (Mn = 19,942, DPI = 1.28).  相似文献   

9.
Six palladium(II) dithiocarbamates of general formula Pd(AmDTC)2, where HAmDTC = aminedithiocarbamic acid, [Pd(II) piperidinedithiocarbamate (1), Pd(II) 4-methylpiperidinedithiocarbamate (2), Pd(II) N-methylbenzyldithiocarbamate (3), Pd(II) dibenzyldithiocarbamate (4), Pd(II) dicyclohexyldithiocarbamate (5), Pd(II) N-cyclohexyl-N-methyldithiocarbamate (6)] have been synthesized and characterized by elemental analyses, FT-IR, 1H and 13C NMR. The X-ray structure of Pd(II), compounds 3 and 4, showed that the ligands are chelated by both sulfur atoms with bond angles S1-Pd-S4 = 179.24(2)° and S2-Pd-S3 = 179.09(5)°, with a distorted square planar geometry around Pd. All these complexes were screened for cytotoxic and antibacterial effects and showed significant antibacterial activity and no substantial in vitro cytotoxicity indicating specificity of the compounds.  相似文献   

10.
Three copper(II) Schiff-base complexes, [Cu(L1)(H2O)](ClO4) (1), [Cu(L2)] (2) and [Cu(L3)] (3) have been synthesized and characterized [where HL1 = 1-(N-ortho-hydroxy-acetophenimine)-2-methyl-pyridine], H2L2 = N,N′-(2-hydroxy-propane-1,3-diyl)-bis-salicylideneimine and H2L3 = N,N′-(2,2-dimethyl-propane-1,3-diyl)-bis-salicylideneimine]. The structure of complex 1 has been determined by single crystal X-ray diffraction analysis. In complex 1, the copper(II) ion is coordinated to one oxygen atom and two nitrogen atoms of the tridentate Schiff-base ligand, HL1. The fourth coordination site of the central metal ion is occupied by the oxygen atom from a water molecule. All the complexes exhibit high catalytic activity in the oxidation reactions of a variety of olefins with tert-butyl-hydroperoxide in acetonitrile. The catalytic efficacy of the copper(II) complexes towards olefin oxidation reactions has been studied in different solvent media.  相似文献   

11.
In Sook Cho 《Tetrahedron letters》2010,51(21):2835-2839
Seven tweezer-type copper(II) ion-selective ionophores; that is, 3α,12α-bis[[[N-(R)thiocarboxamino]acetyl]oxy]-N,N-dioctyl-5β-cholan-24-amides and 3α,12α-bis[[[N-(R)thiocarboxaminomethyl]acetyl]oxy]-N,N-dioctyl-5β-cholan-24-amides (R = alkyl and phenyl), were newly designed and synthesized. Their potentiometric evaluation of the poly(vinyl chloride) (PVC) membranes showed excellent affinity and selectivity to copper(II) ions over those of other transition metal ions and alkali/alkaline earth metal ions. These membranes exhibited super-Nernstian responses toward copper(II) ions (34-36 mV/decade), with detection limits of 10−6-10−7 M.  相似文献   

12.
The reaction of PhHgOAc with N-NHCO-2-C4H3S-Htpp (5) and N-p-HNSO2C6H4tBu-Htpp (4) gave a mercury (II) complex of (phenylato) (N-2-thiophenecarboxamido-meso-tetra phenylporphyrinato)mercury(II) 1.5 methylene chloride solvate [HgPh(N-NHCO-2-C4H3S-tpp) · CH2Cl2 · 0.5C6H14;  6 · CH2Cl2 · 0.5C6H14] and a bismercury complex of bisphenylmercury(II) complex of 21-(4-tert-butyl-benzenesulfonamido)-5,10,15,20-tetraphenylporphyrin, [(HgPh)2(N-p-NSO2C6H4tBu-tpp); 7], respectively. The crystal structures of 6 · CH2Cl2 · 0.5C6H14 and 7 were determined. The coordination sphere around Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 is a sitting-atop derivative with a seesaw geometry, whereas for the Hg(1) in 7, it is a linear coordination geometry. Both Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 acquire 4-coordination with four strong bonds [Hg(1)–N(1) = 2.586(3) Å, Hg(1)–N(2) = 2.118(3) Å, Hg(1)–N(3) = 2.625(3) Å, and Hg(1)–C(50) = 2.049(4) Å for 6 · CH2Cl2 · 0.5C6H14; Hg(2)–N(1) = 2.566(6) Å, Hg(2)–N(2) = 2.155(6) Å, Hg(2)–N() = 2.583(6) Å, and Hg(2)–C(61) = 2.064(7) Å for 7]. The plane of the three pyrrole nitrogen atoms [i.e., N(1)–N(3)] strongly bonded to Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and to Hg(2) in 7 is adopted as a reference plane 3N. For the Hg2+ complex in 6 · CH2Cl2 · 0.5C6H14, the pyrrole nitrogen bonded to the 2-thiophenecarboxamido ligand lies in a plane with a dihedral angle of 33.4° with respect to the 3N plane, but for the bismercury(II) complex in 7, the corresponding dihedral angle for the pyrrole nitrogen bonded to the NSO2C6H4tBu group is found to be 42.9°. In the former complex, Hg(1)2+ and N(5) are located on different sides at 1.47 and −1.29 Å from its 3N plane, and in the latter one, Hg(2)2+ and N(5) are also located on different sides at −1.49 and 1.36 Å form its 3N plane. The Hg(1)?Hg(2) distance in 7 is 3.622(6) Å. Hence, no metallophilic Hg(II)?Hg(II) interaction may be anticipated. NOE difference spectroscopy, HMQC and HMBC were employed to unambiguous assignment for the 1H and 13C NMR resonances of 6 · CH2Cl2 ·  0.5C6H14 in CD2Cl2 and 7 in CDCl3 at 20 °C. The 199Hg chemical shift δ for a 0.05 M solution of 7 in CDCl3 solution is observed at −1074 ppm for Hg(2) nucleus with a coordination number of four and at −1191 ppm for Hg(1) nucleus with a coordination number of two. The former resonance is consistent with that chemical shift for a 0.01 M solution of 6 in CD2Cl2 having observed at −1108 ppm for Hg(1) nucleus with a coordination number of four.  相似文献   

13.
The novel nickel(II) (1) and copper(II) (2) complexes bearing 2′-(4′,6′-di-tert-butylhydroxy-phenyl)-1,4,5-triphenyl imidazole ligand have been synthesized and characterized. The molecular structure analyses of complexes 1 and 2 indicated that Ni(II) centre in 1 adopts a distorted tetrahedral coordination geometry with a dihedral angle of 85.2° between Ni(1)O(1)N(1) plane and Ni(1)O(1A)N(1A) plane, while the Cu(II) centre in 2 represents a distorted square planar coordination geometry with a cis-N2O2 arrangement of the donor atoms, the dihedral angle being 32° between Cu(1)O(1)N(1) plane and Cu(1)O(1A)N(1A) plane. After activation with methylaluminoxane (MAO), both Ni(II) and Cu(II) complexes can be used as catalysts for the addition polymerization of norbornene (NB). The polynorbornenes (PNBs) are produced with very high polymerization activity (108 g PNB mol−1 Ni h−1) for Ni(II) complex and moderate catalytic activity (105 g PNB mol−1 Cu h−1) for Cu(II) complex, respectively. The high molecular weight polynorbornenes (106) are obtained for complexes 1 and 2. Moreover, the distinct effects of polymerization temperature and Al/M ratio on catalytic activities and molecular weights of polymers are discussed.  相似文献   

14.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

15.
A new class of symmetric, end-off, N-methyl piperazine armed binucleating ligands 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-acetyl phenol (HL1) and 2,6-bis[(4-methyl piperazin-1-yl-methyl)]-(4-methylcarboxy) phenol (HL2) were synthesized by the Mannich reaction. Their mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes have been synthesized. These complexes were characterized by elemental analysis, infra-red and electronic spectral analysis. In the electronic spectra, the lower electron withdrawing nature of the C(O)CH3p-substituent (HL1) compared with the C(O)OCH3p-substituent (HL2) of the phenolic ring causes a red shift in the LMCT-charge transfer band. The mononuclear Cu(II) complexes 1 and 7 have a magnetic moment value close to the spin only value with four hyperfine EPR signals. The binuclear Cu(II) complexes 4 and 10 illustrate an antiferromagnetic interaction (μeff 1.56 and 1.55 BM) at 298 K with a broad EPR signal. A variable temperature magnetic moment study of the binuclear copper(II) complexes shows that the extent of antiferromagnetic coupling increases in the order: CHO [K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, S. Sreedaran, P.G. Aravindan, D. Velmurugan, V. Narayanan, Polyhedron 25 (2006) 2859] < C(O)CH3 < C(O)OCH3 (−2J values 134 [Shanmuga Bharathi et al., mentioned above], 149 and 158 cm−1, respectively). The mononuclear Ni(II) complexes 2 and 8 are square planar and diamagnetic. The six coordinated binuclear Ni(II) complexes 5 and 11 show a magnetic moment value of 2.96 and 2.95 BM, respectively. Electrochemical studies of the complexes reveal that all the mononuclear complexes show a single irreversible one-electron transfer reduction wave and the binuclear complexes show two irreversible one-electron transfer reduction waves in the cathodic region. There is an anodic shift in the reduction of the metal centres when the electron withdrawing nature of the p-substituent of the phenolic ring increases. The catecholase activity of the mono and binuclear copper(II) complexes, using pyrocatechol as a model substrate, and the hydrolysis of 4-nitrophenyl phosphate using the mono and binuclear copper(II), nickel(II) and zinc(II) complexes as catalysts showed that the binuclear complexes have higher rate constant values than those of the corresponding mononuclear complexes. A comparison of the spectral, electrochemical and magnetic behaviour of the complexes derived from the ligands is discussed on the basis of the substituent at the para position of the phenolic ring.  相似文献   

16.
For the first time, the formation of a luminescent hexanuclear cluster has been used for the selective determination of copper. In aqueous solutions, the non-luminescent ligand N-ethyl-N′-methylsulfonylthiourea (EMT) forms an intensely red luminescent hexanuclear Cu(I)-cluster with an emission maximum at 663 nm only with Cu(II) ions. The intensity of the luminescence is proportional to the Cu(II) concentration and allows for selective Cu determinations in the μg l−1-range. Ubiquitous metal ions such as Fe(III), Al(III), Ca(II), Mg(II), and alkaline metal ions, as well as other heavy metal ions, e.g. Co(II), Ni(II), Zn(II), Cd(II), Hg(II), and Pb(II) are tolerated in concentrations up to 50 mg l−1. The detection limit for Cu(II) in aqueous solution, calculated according to Funk et al. [Qualitätssicherung in der Analytischen Chemie, Verlag Chemie, Weinheim, 1992], is 113 μg l−1. The cluster formation has been used for the quantitative analysis of copper in tap water and in industrial water, as well as for the localization of copper adsorbed by activated-sludge flocs.  相似文献   

17.
Co(II) complexes with 4,6-di(tert-butyl)-2-aminophenol (HLI) and 2-anilino-4,6-di(tert-butyl)phenol (HLII) have been synthesized and characterized by means of physico-chemical methods. The compounds HLI and HLII coordinate in their singly deprotonated forms and behave as bidentate O,N-coordinated ligands; their low-spin Co(II) complexes are characterized by CoN2O2 coordination modes and square planar geometry. Both the free ligands and their Co(II) and Cu(II) complexes (we have produced and characterized the latter before) exhibit a pronounced antifungal activity against Aspergillus niger, Fusarium spp., Mucor spp., Penicillium lividum, Botrytis cinerea, Alternaria alternata, Sclerotinia sclerotiorum, Monilia spp., which in a number of cases is comparable with that of Nystatin and Terbinafine or even higher. The reducing properties of the ligands and their metal(II) complexes, as well as their antifungal activities, were found to decrease in the order: Cu(LI)2 > Cu(LII)2 ? Co(LI)2 > Co(LII)2 > HLI > HLII.  相似文献   

18.
Complex formation equilibria between Ag(I) and thiourea or N-alkyl-substituted thioureas have been investigated in n-propanol by potentiometry at 10 °C intervals from 5 to 50 °C. Stepwise formation of tris-coordinated AgLn (n = 1-3) complexes has been found for the majority of the ligands. ΔH and ΔS values for the complex formation reactions have been evaluated from the dependence of ln βn on temperature. The alkyl-substituents affect the ligand affinities in different ways in relation with the coordination level n.The reactions are exothermic with few exceptions. Enthalpy favoured complex formation with negative dependence of ΔG on temperature (ΔS > 0) have been found.The enthalpy and entropy changes for the stepwise complex formation equilibria are correlated by two linear compensative relationships with the same isoequilibrium temperature 50-51 °C.  相似文献   

19.
Highly efficient and metal-free aerobic oxidations of cyclohexene and styrene were successfully performed under mild conditions in the presence of 1,4-diamino-2,3-dichloro-anthraquinone and N-hydroxyphthalimide. When cyclohexene was oxidized, an 89% conversion and 71% selectivity for 2-cyclohexen-1-one was obtained under 0.3 MPa at 80 °C for 5 h. In the oxidation of styrene, a 77% conversion and 69% selectivity for benzaldehyde was obtained for 10 h. Furthermore, more olefins were efficiently oxidized to corresponding oxygenated products under mild conditions. All kinds of factors that affected cyclohexene oxidation were well investigated, and the possible reaction mechanism was provided.  相似文献   

20.
Three Co(II), Ni(II) and Zn(II) complexes of orotate with the N-methylimidazole ligand were synthesized and characterized by means of elemental and thermal analysis, magnetic susceptibilities, IR, UV-Vis spectroscopic and antimicrobial activity studies. The crystal structures of [Co(HOr)(H2O)2(Nmeim)2]3·H2O (1), [Ni(HOr)(H2O)2(Nmeim)2] (2) and [Zn(HOr)(H2O)(Nmeim)2] (3) were determined by the single crystal X-ray diffraction technique (H3Or = orotic acid and Nmeim = N-methylimidazole). In complexes 1 and 2, the Co(II) and Ni(II) ions have distorted octahedral geometries with two Nmeim, one orotate and two aqua ligands. Complex 3 has a distorted trigonal bipyramidal geometry with two N-methylimidazole, one orotate and one aqua ligands. In the complexes, the orotate is coordinated to the metal(II) ions through the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group as a bidentate ligand. The complexes form a three-dimensional framework by hydrogen bonding, C-H?π and π?π stacking interactions. The MIC values of the complexes against selected microorganisms were determined to be in range 300-2400 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号