首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of nuclear spin–lattice relaxation rate (1/T1) measurements in a typical Kondo insulator YbB12 for 10,11B and 171Yb nuclei. Above 20 K, 1/T1 at the B sites shows thermally activated temperature dependence with a gap of about 100 K. However, it shows anomalous enhancement below 15 K, which is partially suppressed by magnetic field up to 16 T. No such anomaly was observed at the Yb sites. The ratio of 1/T1 for 11B and 10B nuclei indicates that the anomaly below 15 K is caused by dilute magnetic moments assisted by nuclear spin diffusion. The origin and the nature of the low temperature magnetic fluctuations are discussed.  相似文献   

2.
The experimental measurements of density, viscosity and ultrasonic velocity of aqueous d-arabinose solutions were carried out as functions of concentration (0.1  m [mol kg? 1]  1.0) and temperature (303.15  T [K]  323.15). The isentropic compressibility (βs), acoustic impedance (Z), hydration number (Hn), intermolecular free length (Lf), classical sound absorption (α/f2)class and shear relaxation time (τ) were calculated by using the measured data. These parameters have been interpreted in terms of solute–solvent interactions. The quantum chemical calculations were performed to study the hydrogen bonding in interacting complex formed between α-D-arabinopyranose in 1C4 conformation and water molecules. Computations have been done by using Density Functional Theory (DFT) method at B3LYP/6-31+g(d) level of theory to study the equilibrium structure of α-d-arabinose, α-D-arabinopyranose–water interacting complex and vibrational frequencies. The solution phase study was carried out using Onsager's reaction field model in water solvent. The computed and scaled vibrational frequencies are in good agreement with the main features of the experimental spectrum when seven water molecules are considered explicitly with α-D-arabinopyranose in 1C4 conformation. The interaction energy (Etotal), hydrogen bond lengths and dipole moment (μm) of the interacting complex are also presented and discussed with in the light of solute–solvent interactions.  相似文献   

3.
This paper presents results of investigations of carrier scattering mechanisms in n-Cd1xMgxSe mixed crystals with magnesium content varying from x = 0 to x = 0.33. Experimental results obtained by means of the Fourier Transform Infrared Spectroscopy (FT-IR) and Hall measurements are discussed in the frame of the Drude and the quantum theories. The character of the wavelength dependence of the optical absorption coefficient in investigated crystals was found to be of the type ∼λp, where 2 < p < 3.5. The p = 2 is expected from the Drude theory and the relaxation time approximation. The obtained experimental values of p parameter suggest that the optical phonon and impurity scattering mechanisms are dominating scattering mechanisms in these crystals. The calculated carrier concentration from optical absorption spectrum for a n-CdSe crystal is in a good agreement with this obtained from Hall measurement.  相似文献   

4.
《Solid State Ionics》2006,177(5-6):549-558
Perovskite-type LaGa0.65Mg0.15Ni0.20O3−δ exhibiting oxygen transport comparable to that in K2NiF4-type nickelates was characterized as a model material for ceramic membrane reactors, employing mechanical tests, dilatometry, oxygen permeability and faradaic efficiency measurements, thermogravimetry (TG), and determination of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10 15 Pa to 40 kPa. Within the phase stability domain which is similar to La2NiO4+δ, the defect chemistry of LaGa0.65Mg0.15Ni0.20O3−δ can be adequately described by the ideal solution model with oxygen vacancies and electron holes to be the only mobile defects, assuming that Ni2+ may provide two energetically equivalent sites for hole location. This assumption is in agreement with the density of states, estimated from thermopower, and the coulometric titration and TG data suggesting Ni4+ formation in air at T < 1150 K. The hole conductivity prevailing under oxidizing conditions occurs via small-polaron mechanism as indicated by relatively low, temperature-activated mobility. The ionic transport increases with vacancy concentration on reducing p(O2) and becomes dominant at oxygen pressures below 10 7–10 5 Pa. The average thermal expansion coefficients in air are 11.9 × 10 6 and 18.4 × 10 6 K 1 at 370–850 and 850–1270 K, respectively. The chemical strain of LaGa0.65Mg0.15Ni0.20O3−δ ceramics at 1073–1123 K, induced by the oxygen partial pressure variations, is substantially lower compared to perovskite ferrites. The flexural strength determined by 3-point and 4-point bending tests is 167–189 MPa at room temperature and 85–97 MPa at 773–1173 K. The mechanical properties are almost independent of temperature and oxygen pressure at p(O2) = 1–2.1 × 104 Pa and 773–1173 K.  相似文献   

5.
The Zn/Er/Yb:LiNbO3 and Er/Yb:LiNbO3 crystals were grown by the Czochralski technique. The laser characteristics of 1.54 μm emission were predicted based on the Judd–Ofelt theory, and the intensity parameters Ωt (Ω2=7.23×10?20 cm2, Ω4=3.15×10?20 cm2 and Ω6=1.43×10?20 cm2) were obtained. The stimulated emission cross sections (σem) at 1.54 μm emission in Zn/Er/Yb:LiNbO3 were calculated based on the McCumber theory and the Füchtbauer–Ladenburg theory. The gain cross section spectrum of Zn/Er/Yb:LiNbO3 crystal was also investigated. Under 980 nm excitation, a lenghthening lifetime of 1.54 μm emission and an enhancement of green upconversion emission were observed for Zn/Er/Yb:LiNbO3 crystal. The studies on the power pump dependence and the upconversion mechanism suggested that both green and red upconversion emissions were populated via the three-photon process, and Zn2+ ion tridoping increases the probability of cross relaxation process between the two neighboring Er3+ ions.  相似文献   

6.
Nd3+-doped TiO2–SiO2 composites were prepared by sol–gel method. Optical properties such as radiative life-time (τ), stimulated emission cross-section (σp) and branching ratio (β) were calculated using Judd–Ofelt theory. Violet to blue upconversion emissions at 380 nm (4D3/24I11/2), 399 nm (2P3/24I11/2), 420 nm (2D5/24I9/2) and 452 nm (2P3/24I13/2) were obtained under 578 nm xenon-lamp excitation. The choice of 578 nm is justified by the absorption spectra of the same samples, which shows a strong absorption peak at 578 nm. This 578 nm excitation pump produces upconversion in Nd3+ by a sequential two-photon absorption process.  相似文献   

7.
Experiments on hybrid superconducting normal-metal structures have revealed that even in the absence of tunnel junctions the onset of superconductivity can lead to a decrease in the electrical conductance by an amount many orders of magnitude greater than e2 / h. In this paper, we provide a theory of this phenomenon which shows that it originates from an instability in the four-probe conductance which is absent from two-probe measurements. We compare the zero-bias, zero-temperature four-probe conductances GNand GSof a normal diffusive metal in contact with a superconductor in both the normal (N) and superconducting (S) states, respectively. In the absence of tunnel barriers, the ensemble average of the difference δG = GS  GNvanishes, in agreement with quasiclassical theory. However, we also predict that there exist macroscopic sample specific fluctuations in δG, which lie beyond quasiclassical theory and allow large negative values of δG to occur.  相似文献   

8.
Those linear and nonlinear magnetoelastic coupling coefficients which determine the magnetostrictive stress and the strain-induced out-of-plane magnetic anisotropy in epitaxially grown FCC Co(0 0 1) films are calculated by the ab initio density functional electron theory. The nonlinear couplings have a strong effect on the change Δσ1m of the in-plane magnetostrictive stress resulting from a change of the magnetization direction from [0 1 0] to [1 0 0], but a negligibly small effect on the out-of-plane anisotropy eMCA. The calculations confirm the experimental result that the measured out-of-plane anisotropy cannot be totally attributed to volume magnetoelastic effects. Estimates are given for the nonlinear magnetoelastic coupling coefficients m1γ,2 and m2γ,2.  相似文献   

9.
The formation of complex species of dioxouranium(VI) ion with EDTA was studied in the pH range of 1–3.5 and at 25 °C using a combination of potentiometric and spectrophotometric techniques. Results showed evidence for formation of the following species: [UO2H4EDTA]2+, [UO2H3EDTA]+, and [UO2H2EDTA]. Investigations were performed in sodium perchlorate as background electrolyte at 0.1, 0.3, 0.5, 0.7, and 1.0 mol dm? 3. The parameters based on the formation constants were calculated, and the dependences of protonation and the stability constants on ionic strength are described. The dependence on ionic strength of the formation constants was analyzed using the specific ion interaction theory (SIT) model. The stability constant values at infinite dilution, obtained using SIT model, are log β°141 = 6.77, log β°131 = 5.99 and log β°121 = 9.29, where indexes for the overall stability constant, βpqr, refer to the equilibrium pUO22+ + qH+ + rL4? ? MpHqLr(2p + q ? 4r). The specific interaction coefficients are also reported.  相似文献   

10.
Optical properties of a Ho-doped LaF3 single crystal have been detailed investigated as a promising material for 2 μm and 2.9 μm lasers for the first time. Judd–Ofelt theory was applied to analyze the absorption spectrum to determine the J–O intensity parameters Ωt(t=2,4,6), based on which the emission probabilities, branching ratio and radiative lifetime for the as-grown crystal were all calculated. The stimulated emission cross-sections of the 5I7  5I8 and 5I6  5I7 transitions were obtained by using the Fuchtbauer–Ladenburg method. The gain cross-section for 2 μm emission becomes positive once the population inversion level reaches 30%. The Ho:LaF3 crystal shows long fluorescence lifetime of 5I7 manifold (25.81 ms) as well as 5I6 manifold (10.37 ms) compared with other Ho3+-doped crystals. It can be proposed that the Ho:LaF3 crystal may be a promising material for 2 μm and 2.9 μm laser applications.  相似文献   

11.
A near-IR laser absorption spectrometer using a technique of wavelength modulation spectroscopy is used to measure stable carbon isotope ratios of ambient CO213C) via the absorption lines 12CO2 R(17) (2ν1 + ν12  ν12 + ν3) at 4978.205 cm−1 and 13CO2 P(16) (ν1 + 2ν2 + ν3) at 4978.023 cm−1. The isotope ratios are measured with a reproducibility of 0.02‰ (1σ) in a 130-s integration time over a 12-h period. The humidity effect on δ13C values has been evaluated in laboratory experiments. The δ13C values of CO2 in ambient air were measured continuously over 8 days and agreed well with those from isotope ratio mass spectrometry of canister samples. The spectrometer is thus capable of real-time, in situ measurements of stable carbon isotope ratios of CO2 under ambient conditions.  相似文献   

12.
Kunio Wakamura 《Solid State Ionics》2009,180(26-27):1343-1349
We find the relationships among optical dielectric constant ε, activation energy Eac, averaged atomic mass per a formula unit, ∑jmj / N, volume V and transition temperature Tc for various type ion conductors with forms of Eac = α / (ε ? β), Eac = A0 + δ / [(∑jmj / N) ? d], Eac = Av / V2/3, and ln(Tc) = g ? hln(∑jmj), where α, β, δ, A0, d, Av, g and h are constants depending on the kinds of conduction elements. We derive those proportional forms from a simple equation of motion under the assumption of ion hopping assisted by enhanced vibration displacement of host lattice. The enhancement is induced from the large fourth-order term of the host lattice potential originating from the electronic shielding effect of Coulomb force, heavy atomic mass of constituent ion, and volume expansion under the long-range periodicity of crystal structure. This mechanism is ascertained from characteristic phenomena of various kinds of conduction elements. For impurity-type H+-ion or defect conductor, the proportional form is shifted from that of superionic conductor because of weakened effect of host lattice vibration mode on H+-ion or O-ion defect. Photo-induced spectra of mobile ion in AgCl are understood, and a small quantum effect of H+ -ion is suggested.  相似文献   

13.
Fourier transform spectra of oxirane (ethylene oxide, c-C2H4O) have been recorded in the 730–1560 cm?1 (6.4–13.7 μm) spectral region using a Bruker IFS125HR spectrometer at a resolution of 0.0019 cm?1. A total of six vibration bands, ν15, ν12, ν5, ν3, ν10 and ν2, have been observed and analyzed. The corresponding upper state ro-vibrational levels were fit using Hamiltonian matrices accounting for various interactions. Satisfactory fits were obtained using the following polyads {151, 121, 51} and {101, 21} of interacting states. As a result, an accurate and extended set of Hamiltonian constants were obtained. The following band centers were derived: ν0 (ν15) = 808.13518(60) cm?1, ν0 (ν12) = 822.27955(37) cm?1, ν0 (ν5) = 876.72592(15), ν0 (ν3) = 1270.37032(10) cm?1, ν0 (ν10) = 1471.35580(50) cm?1 and ν0 (ν2) = 1497.83309(15) cm?1 where the uncertainties are one standard deviation.  相似文献   

14.
Hongjie Zhang  Gang Chen  Xin Li 《Solid State Ionics》2009,180(36-39):1599-1603
Photocatalysts Bi4Ti3 ? xCrxO12(x = 0.00, 0.06, 0.15, 0.30, 0.40, and 0.50) with perovskite structure were synthesized by sol–gel method and their electronic structures and photocatalytic activities were investigated. The Bi4Ti2.6Cr0.4O12 photocatalyst exhibited the highest performance of H2 evolution in methanol aqueous solution (58.1 μmol h? 1 g? 1) under visible light irradiation (λ > 400 nm) without a co-catalyst, whereas no H2 evolution is observed for Bi4Ti3O12 under the same conditions. The UV–vis spectra indicated that the Bi4Ti2.6Cr0.4O12 had strong photoabsorption in the visible light region. The results of density functional theory (DFT) calculation illuminate that the conduction bands of Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 6p orbitals, and the valence bands are composed of O 2p + Bi 6s hybrid orbitals, while the conduction bands of chromium-doped Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 2p + Cr 3d orbitals, and the O 2p + Cr 3d hybrid obitals are the main contribution to the valence band.  相似文献   

15.
《Solid State Ionics》2006,177(1-2):121-127
Lithium cobalt vanadate LixCoVO4 (x = 0.8; 1.0; 1.2) has been prepared by a solid state reaction method. The XRD analysis confirms the formation of the sample. A new peak has been observed for Li1.0CoVO4 and for Li1.2CoVO4 indicating the formation of a new phase. The XPS analysis indicates the reduction in the oxidation of vanadium and oxygen with the addition of Li in LixCoVO4 (x = 0.8, 1.0, 1.2). The impedance analysis gives the conductivity value as 2.46 × 10 5, 6.16 × 10 5, 9 × 10 5 Ω 1 cm 1 for LixCoVO4 (x = 0.8; 1.0; 1.2), all at 623 K. The similarity in the bulk activation energy (Ea) and the activation enthalpy for migration of ions (Eω) indicate that the conduction in Li1.2CoVO4 has been due to hopping mechanism.  相似文献   

16.
《Current Applied Physics》2009,9(5):1160-1164
Multi-metallic Prussian blue compound Ni1.125Co0.375[Fe(CN)6] · 6.8H2O has been synthesized. The Mössbauer spectroscopy at room temperature and IR spectra study revealed that the metal ions are bonded through cyanide ligand and the presence of low spin FeIII(S = 1/2) and high spin FeIII(S = 5/2) ions, as showed in these structure: FeIII(S = 1/2)-CN-(CoII/NiII)(96%) and FeIII(S = 5/2)-NC-(CoII/NiII) (4%). The Curie constant of C = 3.00 cm3 K mol−1 and Weiss paramagnetic Curie temperature of θ = 16.43 K were observed in fitting according to Curie–Weiss law. These results indicate that there existed a ferromagnetic exchange interaction in the complexes. The observed value of coercive field (Hc) and remanent magnetization (Mr) at 4 K for the compound are 497 Oe and 1.03 . The presence of spin-glass behaviours in the compound is ascribed mainly to domain mobility or domain growth under different cooling conditions.  相似文献   

17.
The Fourier transform infrared (FTIR) spectrum of the ν6 band of ethylene-cis-d2(cis-C2H2D2) was recorded with a unapodized resolution of 0.0063 cm?1 in the 990–1100 cm?1 region. A total of 609 transitions were assigned to this band centred at 1039.7682 ± 0.0003 cm?1. The ν6 band was found to be coupled to the ν4 band by a-type Coriolis resonance. Both perturbed and unperturbed transitions were assigned and fitted to give eight rovibrational constants with high accuracy for the v6 = 1 state with a standard deviation of 0.00097 cm?1 using a Watson’s A-reduced Hamiltonian in the Ir representation. From a rovibrational analysis of the Coriolis interaction between the ν6 band and non-infrared active ν4 band of cis-C2H2D2, the band centre of ν4 at 984.9 ± 0.2 cm?1 was derived. Furthermore, the second-order a-type Coriolis coupling constant between the two bands was obtained for the first time.  相似文献   

18.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

19.
Emission spectra of SrH and SrD have been studied at high resolution using a Fourier transform spectrometer. The molecules have been produced in a high temperature furnace from the reaction of strontium metal vapor with H2/D2 in the presence of a slow flow of Ar gas. The spectra observed in the 18 000–19 500 cm?1 region consist of the 0–0 and 1–1 bands of the E2Π–X2Σ+ transition of the two isotopologues. A rotational analysis of these bands has been obtained by combining the present measurements with previously available pure rotation and vibration–rotation measurements for the ground state, and improved spectroscopic constants have been obtained for the E2Π state. The present analysis provides spectroscopic constants for the E2Π state as ΔG(½) = 1166.1011(15) cm?1, Be = 3.805503(32) cm?1, αe = 0.098880(47) cm?1, re = 2.1083727(89) Å for SrH, and ΔG(½) = 839.1283(23) cm?1, Be = 1.918564(15) cm?1, αe = 0.034719(23) cm?1, re = 2.1121943(83) Å for SrD.  相似文献   

20.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号