首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary: The fabrication of polymer diodes on a glass substrate by an ink‐jet printing technique is reported. Both an n‐type semiconductive polymer, poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐(1‐cyanovinylene)phenylene] (CN‐PPV), and a p‐type semiconductive polymer, polypyrrole (PPy) or poly(3,4‐ethylenedioxythiophene) (PEDOT), were printed through a piezoelectric ink‐jet printer. The printed CN‐PPV/PPy and CN‐PPV/PEDOT diodes showed good rectifying characteristics. These results indicate the potential of the low‐cost ink‐jet printing technique to produce polymer microelectronic devices and circuits.

Schematic diagram of the printed polymer diode  相似文献   


2.
In this paper, we report the progress in using paper sizing chemistry to fabricate patterned paper for chemical and biological sensing applications. Patterned paper sizing uses paper sizing agents to selectively hydrophobize certain area of a sheet. The hydrophilic-hydrophobic contrast of the pattern so created has an excellent ability to control capillary penetration of aqueous liquids in channels of the pattern. Incorporating this idea with digital ink jet printing technique, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and chemicals with precision into the microfluidic patterns to form biological/chemical sensing sites within the patterns, forming the complete sensing devices. This study shows the potential of combining paper sizing chemistry and ink jet printing to produce paper-based sensors at low cost and at commercial volume.  相似文献   

3.
Good jetting performance and pigment‐dispersing stability are necessary for pigment‐based ink‐jet inks. This study investigates how the chemical structures of the polymeric dispersants affect the pigment‐dispersing stability and jetting performance of ink‐jet inks. A series of polymeric dispersants containing styrene (hydrophobic unit) and acrylic acid (hydrophilic unit) with different ratios have been synthesized and used to disperse different pigments. Because 3000–12,000 ink drops can be expelled from the nozzle of a thermal bubble‐type ink‐jet printer within 1 s, the jetting behavior is related to the rheology variation of a dilute solution under a high shear. An in situ drop formation system has been used to study the high‐shear‐rate rheology (dynamic surface tension and dynamic viscosity) of a solution with a viscosity lower than 3 cps, which no commercial rheometer can measure. Excellent ink‐jet inks can only be produced by the combination of pigments, dispersants, and surfactants with appropriate hydrophilicity. Moreover, the correlation of the pigment surface properties, the chemical structures of the polymeric dispersants, and ink formulation is discussed. The effects of the surfactants and firing conditions on the jetting behavior of the ink‐jet ink are also examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1909–1920, 2003  相似文献   

4.
A novel method for the fabrication of paper-based microfluidic diagnostic devices is reported; it consists of selectively hydrophobizing paper using cellulose reactive hydrophobization agents. The hydrophilic–hydrophobic contrast of patterns so created has excellent ability to control capillary penetration of aqueous liquids in paper channels. Incorporating this idea with digital ink jet printing techniques, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and indicator reagents with precision into the microfluidic patterns to form bio-chemical sensing zones within the device. This method thus allows the complete sensor, i.e. channel patterns and the detecting chemistries, to be fabricated only by two printing steps. This fabrication method can be scaled up and adapted to use high speed, high volume and low cost commercial printing technology. Sensors can be fabricated for specific tests, or they can be made as general devices to perform on-demand quantitative analytical tasks by incorporating the required detection chemistries for the required tasks.  相似文献   

5.
Summary: Due to its capability of dispensing very small volumes of different liquids in a controlled manner, ink‐jet printing is well suited for combinatorial experiments. The multi‐nozzle ink‐jet delivery system is especially advantageous for parallel chemical synthesis of different materials. We have used ink‐jet printing of an oxidizing agent to pattern a pre‐coated conducting polymer, poly(3,4‐ethylenedioxy)‐thiophene‐poly(styrene sulfonate) (PEDOT‐PSS), yielding electrodes with predefined shapes and a controlled degree of sheet resistivity for use in gray‐scale organic light‐emitting devices (OLEDs). The electrical and optical properties of the PEDOT‐PSS layer are modified via chemical interaction using the oxidizing agent. These experiments were performed using a desktop ink‐jet printer in conjunction with common graphic software which employed color functions such as CMY (cyan, magenta and yellow), HSL (hue, saturation and luminosity) and RGB (red, green and blue).

Photographs of gray‐scale OLEDs patterned on PEDOT‐PSS surfaces by an ink‐jet printer on plastic substrates.  相似文献   


6.
This work describes the development of a new green solid-phase extraction approach, which is based on the use of low-cost extraction discs composed of plain filter papers that are covered with a synthetic wax-like coating. The filter papers are printed in a commercial solid ink printer, which dispenses a synthetic wax-like ink on the surface of the paper, to cover the hydrophilic cellulose fibre matrix with an interface of lipophilic domains where non-polar analytes can partition through hydrophobic interactions. The modified paper filters were used to extract hydrophobic organic compounds from water samples following the customary procedure of solid-phase extraction without sorbent preconditioning and needless of high-vacuum sources. As a proof-of-concept application, a series of non-polar organic UV filters were used as model analytes to optimise the extraction parameters and evaluate the performance of the method in spiked water samples. Based on this principle, a new sample preparation platform with low environmental footprint has been developed that enables extraction to be carried out using low-cost, environmental benign and non-toxic conventional materials. The advantages and disadvantages of the method, alongside with its future prospects towards the development of custom-made ‘printed extraction kits’, are envisioned and discussed.  相似文献   

7.
This Minireview compares two distinct ink types, namely metal-organic decomposition (MOD) and nanoparticle (NP) formulations, for use in the printing of some of the most conductive elements: silver, copper and aluminium. Printing of highly conductive features has found purpose across a broad array of electronics and as processing times and temperatures reduce, the avenues of application expand to low-cost flexible substrates, materials for wearable devices and beyond. Printing techniques such as screen, aerosol jet and inkjet printing are scalable, solution-based processes that historically have employed NP formulations to achieve low resistivity coatings printed at high resolution. Since the turn of the century, the rise in MOD inks has vastly extended the range of potentially applicable compounds that can be printed, whilst simultaneously addressing shelf life and sintering issues. A brief introduction to the field and requirements of an ink will be presented followed by a detailed discussion of a wide array of synthetic routes to both MOD and NP inks. Unindustrialized materials will be discussed, with the challenges and outlook considered for the market leaders: silver and copper, in comparison with the emerging field of aluminium inks.  相似文献   

8.
导电油墨及其应用技术进展   总被引:1,自引:0,他引:1       下载免费PDF全文
印刷电子是将传统印刷工艺应用于电子产品制造的新型工艺技术,导电油墨是印刷电子关键材料之一,受到了人们的广泛关注。为了全面了解并把握导电油墨及其应用发展动态,本文结合近年来导电油墨领域文献及研究工作情况,综合分析了导电油墨的分类、构成以及其印刷工艺技术和印刷装备情况,指出导电油墨的主要发展方向在于既要开发新型功能材料(如碳纳米管、石墨烯等)在导电油墨中的应用技术,又要提高印刷成膜后导电材料间的互联性能,解决印刷电路与其它器件间的连线问题。  相似文献   

9.
Rapid, precise, and reproducible deposition of a broad variety of functional materials, including analytical assay reagents and biomolecules, has made inkjet printing an effective tool for the fabrication of microanalytical devices. A ubiquitous office device as simple as a standard desktop printer with its multiple ink cartridges can be used for this purpose. This Review discusses the combination of inkjet printing technology with paper as a printing substrate for the fabrication of microfluidic paper‐based analytical devices (μPADs), which have developed into a fast‐growing new field in analytical chemistry. After introducing the fundamentals of μPADs and inkjet printing, it touches on topics such as the microfluidic patterning of paper, tailored arrangement of materials, and functionalities achievable exclusively by the inkjet deposition of analytical assay components, before concluding with an outlook on future perspectives.  相似文献   

10.
A printer has been designed and built for the preparation of combinatorial libraries of ceramics and for solid freeforming of functionally graded ceramics with three-dimensionally programmable spatial variation in composition. Several ceramic suspensions (as inks) can be subjected to micromixing behind the nozzle and printed at precise positions. Both mixing and positioning are computer-controlled. The machine consists of an XY table to control the geometry, a set of electromagnetic valves that manage the mixing, a combined electromagnetic valve and sapphire nozzle that form the print head, and a computer that controls the whole system. The mixing valves can eject as little as 1 mg/s ink into the mixing chamber. The printer has been controlled, run, calibrated and tested; the composition and geometry of printed mixtures can be controlled precisely. This method for the controlled mixing of powders facilitates the advance of combinatorial methods within the materials sciences.  相似文献   

11.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   

12.
Watanabe M 《The Analyst》2011,136(7):1420-1424
A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions.  相似文献   

13.
Summary: A drop‐on‐demand ink‐jet printer has been used to print a silver‐organic solution onto glass substrates. Conductive silver tracks were obtained by heat treatment of the ink‐jet printed deposits at temperatures ranging from 125 °C–200 °C in air. Resistivity values were found to have dropped to two to three times the theoretical resisitivity of bulk silver after temperatures of 150 °C and above were used.

Resistivity values of a silver‐based ink.  相似文献   


14.
Although sol-gel processing is under intense world-wide investigation, the vast majority of interest in this technique is concerned with synthesis of engineering ceramics. Sol-gel has not been widely applied to the preparation of materials for use in conventional ceramics, such as tiles and tableware. This paper describes a novel application of aqueous sol-gel processing in which sol-gel based inks are used to decorate ceramic articles by continuous ink-jet printing. These inks contain major components of the colour for ceramic decoration in the form of a colloidal aqueous sol which dries to a gel after printing and is then converted to the coloured decoration on firing. The ink can be printed directly onto the ceramic, or printed onto paper and applied as a gel transfer. The key properties in formulating the inks are addressed and experiments are described that demonstrate this process. Its potential advantages over conventional decorating methods are discussed.  相似文献   

15.
Hu JY  Lin YP  Liao YC 《Analytical sciences》2012,28(2):135-140
An inkjet printing method is described to fabricate hydrogen peroxide (H(2)O(2)) sensors. Insoluble Prussian blue (PB) nanoparticles were dispersed in aqueous solvent, and were printed on screen printed carbon electrodes with a piezoelectric inkjet printer for H(2)O(2) detection. The electrochemical behavior of the printed sensors was studied by using cyclic voltammetry and chronoamperometry. The printed sensors showed great electrocatalytic activity toward H(2)O(2) and can be used for amperometric detection of H(2)O(2). The calibration curves for H(2)O(2) determination showed a linear range from 0.02 to 0.7 mM with a sensitivity of 164.82 μA M(-1) cm(-2) for the printed PB film. The results showed the feasibility of applying inkjet printing technology on surface modification; the results also provide an alternative way for manufacturing electrochemical sensors.  相似文献   

16.
Summary: Two types of ink‐jet inks are presented: ink containing an aqueous dispersion of silver nanoparticles and an oil‐in‐water microemulsion‐based ink. The metallic ink contains nanoparticles of silver, which are formed in the presence of an ionic polymeric stabilizer. Sintering of the printed image obtained with the use of such silver‐based inks at temperatures as low as 300 °C results in formation of patterns possessing noticeable conductivity. The microemulsion inks are based on a thermodynamically stable microemulsion, in which the dispersed oil phase is a volatile solvent containing a water‐insoluble colorant. After contact of the jetted ink droplets with a substrate, nanodroplets of the microemulsion are converted into nanoparticles of the solubilized colorant. In some cases, it was found that the evaporation of microemulsion ink droplets leads to formation of rings composed of ordered nanoparticles.

Scheme of ink‐jet printing of an oil‐in‐water microemulsion followed by conversion of the nanodroplets into nanoparticles, caused by quick evaporation of the solvent within the microemulsion droplets. Therefore, the ink behaves as a dye‐based ink prior to printing, but after printing it behaves like a pigment‐based ink.  相似文献   


17.
Summary: Defined films of luminescent ruthenium(II ) polypyridyl‐poly(methyl methacrylate) (PMMA) and iridium(III ) polypyridyl‐polystyrene (PS) copolymers could be prepared by ink‐jet printing. The copolymers were deposited on photoresist‐patterned glass substrates. Films as thin as 120 nm could be printed with a roughness of 1 to 2%. In addition, the film thickness could be varied in a controlled way through the number of droplets deposited per unit area. The topography of the ink‐jet printed films was analyzed utilizing an optical profilometer. The absorbance and emission spectra were measured using fast parallel UV‐vis and fluorescence plate reader.

Photo of the solutions of luminescent ruthenium (left) and iridium (right) containing polymers in a glass microtiter plate (top). The subsequently prepared films using ink‐jet dispensing techniques are shown below.  相似文献   


18.
Antibodies were patterned onto flexible plastic films using the flexographic printing process. An ink formulation was developed using high molecular weight polyvinyl alcohol in carbonate-bicarbonate buffer. In order to aid both antibody adhesion and the quality of definition in the printed features, a nitrocellulose coating was developed that was capable of being discretely patterned, thus increasing the signal-to-noise ratio of an antibody array. Printing antibody features such as dots, squares, text, and fine lines were reproduced effectively. Furthermore, this process could be easily adapted for printing of other biological materials, including, but not limited to, enzymes, DNA, proteins, aptamers, and cells.  相似文献   

19.
n-Alkanethiols HS-(CH2)n-CH3 such as hexadecanethiol (HDT, n = 15), octadecanethiol (ODT, n = 17), and eicosanethiol (ECT, n = 19) have been shown to provide highly protective etch resists on microcontact-printed noble metals. As the quality of the printed pattern strongly depends on the mobility of the ink compound, we focused on understanding the diffusion behavior of HDT, ODT, and ECT in poly(dimethylsiloxane) (PDMS) stamps. We used a commercial PDMS material (Sylgard184), which is commonly used for microcontact printing (muCP), and a custom-synthesized one with a higher modulus. On the basis of linear-diffusion experiments, which maintained realistic printing conditions, we showed that the ink transport in the stamp follows Fick's law of diffusion. We then determined the diffusion coefficient by analytical and numerical modeling of the diffusion experiments. Numerical calculations were carried out with the finite-difference method applying more realistic boundary conditions (ink adsorption). Values for the diffusion coefficients of the three ink compounds in the two different PDMS materials all are on the order of (4-7) x 10(-7) cm2 s(-1). The scope and limits of the mathematical models are discussed. To demonstrate the potential of such models for microcontact printing, we simulate multiple printing cycles of an inked stamp and compare the results with experimental data.  相似文献   

20.
Summary: The driving forces behind the development of flexible electronics are their flexibility, lightweightedness, and potential for low‐cost manufacturing. However, because of physical limitations, traditional thermal processes cause deformations in the flexible substrate. As a result, the adhesion quality of the printed wires is deteriorated. This article reviews recent developments in printing circuits on a flexible substrate by combining self‐assembled polyelectrolytes, ink‐jet printing of a catalyst, and electroless plating of metals. The limitations and potential applications of this technology are also discussed. Experiments implementing this technology demonstrated significant results. By a vibration‐induced assistance during an ink‐jet printing catalyst process, line width and blurring can be controlled to within ±3% variation. Following the IPC 6013 standard for flexible electronics, the results after thermal cycling (288 °C, 6 times) and a hot oil test (260 °C, 3 times) indicated that the metallic circuit had retained excellent adhesion properties and electric characteristics. We also report the first successful demonstration of a metal film in a via‐hole inner wall on a flexible substrate. This novel fabrication method is ideal for the realization of large area, flexible electronics and future multilayer flexible substrate application, such as flexible display, chip on flexible substrate, etc., particularly where traditional lithographic processes can not be applied.

Flexible high‐density circuit on an FR‐4 substrate (left) and picture of via hole with copper inner wall (right).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号