首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics near moving contact lines of two room-temperature polymer melts, polyisobutylene (PIB) and polystyrene (PS), are different from those of a third polymer melt, polydimethylsiloxane (PDMS). While all three fluids exhibit Newtonian behavior in rotational rheological measurements, a model of the hydrodynamics near moving contact lines which assumes Newtonian behavior of the fluid accurately describes the interface shape of a variety of PDMS fluids but fails to describe the interface deformation by viscous forces in PIB and PS. The magnitude of the deviations from the model and the distance along the liquid-vapor interface over which they are seen increase with increasing capillary number. We conclude that the wetting behaviors of PIB and PS are influenced by weak elasticity in these low molecular weight melts and that dynamic wetting is more sensitive to this elasticity than standard rheometric techniques.  相似文献   

2.
The macroscopic flow geometry has long been assumed to have little impact on dynamic wetting behavior of liquids on solid surfaces. This study experimentally studied both spontaneous spreading and forced wetting of several kinds of Newtonian and non-Newtonian fluids to study the effect of the macroscopic flow geometry on dynamic wetting. The relationship between the dynamic contact angle, θ(D), and the velocity of the moving contact line, U, indicates that the macroscopic flow geometry does not influence the advancing dynamic wetting behavior of Newtonian fluids, but does influence the advancing dynamic wetting behavior of non-Newtonian fluids, which had not been discovered before.  相似文献   

3.
Insulator‐based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non‐Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear‐thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear‐thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear‐thinning PAA solution.  相似文献   

4.
Characteristics of viscous fingering patterns in polymer solutions were investigated by radially pushing air in a radial Hele‐Shaw cell containing hydroxypropyl methyl cellulose (HPMC) solutions. Low and high molecular weight HPMC samples were used. An increase in molecular weight easily yielded chain entanglements, which led to a strong shear thinning and an increase in elasticity. For the low molecular weight HPMC solutions, only the dense‐branching patterns were observed over the entire injection pressure range. When isopropyl alcohol was added into the HPMC solutions, leading to less elasticity, the pattern was tip‐splitting one, which is observed for Newtonian fluids. On the other hand, for the high molecular weight HPMC solutions, the resulting patterns showed a systematic change from dense‐branching to skewering patterns through tip‐splitting patterns as the injection pressure increased. The measured tip velocity was compared with the modified Darcy's law, but the coincidence is poor. The velocity corrected by the displaced area ratio provided a good linear relation.  相似文献   

5.
Possible variants of the rheological behavior of silica model dispersions have been analyzed. Different types of interaction between the particles and a dispersion medium make it possible to obtain different systems from low-viscosity sols to gels. Proton-donor (water) and aprotic (dimethyl sulfoxide) media have been used for comparison. Dispersions in the aprotic medium behave as non-Newtonian viscous fluids exhibiting shear thinning or shear thickening depending on deformation rate. Aqueous dispersions are viscoelastic and viscoplastic objects that exhibit the shear thickening at stresses higher than the yield stress. The introduction of small amounts of poly(ethylene oxide) into the organic dispersion medium initiates gelation. An increase in the polymer content in the dispersion medium above the concentration corresponding to the formation of a macromolecular network promotes an increase in stiffness and strength of the gels. The rheological behavior of gels is influenced by the polymer molecular mass and its affinity for a solvent.  相似文献   

6.
Electroosmotic flow (EOF) has been widely used to transport fluids and samples in micro- and nanofluidic channels for lab-on-a-chip applications. This essentially surface-driven plug-like flow is, however, sensitive to both the fluid and wall properties, of which any inhomogeneity may draw disturbances to the flow and even instabilities. Existing studies on EOF instabilities have been focused primarily upon Newtonian fluids though many of the chemical and biological solutions are actually non-Newtonian. We carry out a systematic experimental investigation of the fluid rheological effects on the elastic instability in the EOF of phosphate buffer-based polymer solutions through T-shaped microchannels. We find that electro-elastic instabilities can be induced in shear thinning polyacrylamide (PAA) and xanthan gum (XG) solutions if the applied direct current voltage is above a threshold value. However, no instabilities are observed in Newtonian or weakly shear thinning viscoelastic fluids including polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) solutions. We also perform a quantitative analysis of the wave parameters for the observed elasto-elastic instabilities.  相似文献   

7.
8.
Using nonequilibrium molecular dynamics simulations, we study the non-Newtonian rheological behaviors of a monoatomic fluid governed by the Lennard-Jones potential. Both steady Couette and oscillatory shear flows are investigated. Shear thinning and normal stress effects are observed in the steady Couette flow simulations. The radial distribution function is calculated at different shear rates to exhibit the change of the microscopic structure of molecules due to shear. We observe that for a larger shear rate the repulsion between molecules is more powerful while the attraction is weaker, and the above phenomena can also be confirmed by the analyses of the potential energy. By applying an oscillatory shear to the system, several findings are worth mentioning here:First, the phase difference between the shear stress and shear rate increases with the frequency. Second, the real part of complex viscosity first increases and then decreases while the imaginary part tends to increase monotonically, which results in the increase of the proportion of the imaginary part to the real part with the increasing frequency. Third, the ratio of the elastic modulus to the viscous modulus also increases with the frequency. These phenomena all indicate the appearance of viscoelasticity and the domination of elasticity over viscosity at high oscillation frequency for Lennard-Jones fluids.  相似文献   

9.
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.  相似文献   

10.
11.
The rheology of pseudoplastic fluids in porous media using network modeling   总被引:1,自引:0,他引:1  
This paper considers the rheology of pseudoplastic (shear thinning) fluids in porous media. The central problem studied is the relationship between the viscometric behavior of the polymer solution and its observed behavior in the porous matrix. In the past, a number of macroscopic approaches have been applied, usually based on capillary bundle models of the porous medium. These simplified models have been used along with constitutive equations describing the fluid behavior (usually of power law type) to establish semiempirical macroscopic equations describing the flow of non-Newtonian fluids in porous media. This procedure has been reasonably successful in correlating experimental results on the flow of polymer solutions through both consolidated and unconsolidated porous materials. However, it does not allow an interpretation of polymer flow in porous media in terms of the flows on a microscopic scale; nor does it allow us to predict changes in macroscopic behavior resulting from variations at a microscopic level in the characteristics of the porous medium such as pore size distribution. In this work, we use a network approach to the modeling of non-Newtonian rheology, in order to understand some of the more detailed features of polymjer flow in porous media. This approach provides a mathematical bridge between the behavior of the non-Newtonian fluid in a single capillary and the macroscopic behavior as deduced from the pressure drop-flow rate relation across the whole network model. It demonstrates the importance of flow redistribution within the elements of the capillary network as the overall pressure gradient varies. As an example of a pseudoplastic fluid in a porous medium, we consider the flow of xanthan biopolymer. This polymer is important as a displacing fluid viscosifier in enhanced oil recovery applications and, for that reason, a considerable amount of experimental data has been published on the flow of xanthan solutions in various porous media.  相似文献   

12.
Non-Newtonian fluids are ubiquitous in daily life and industrial applications. Herein, we report an intelligent fluidic system integrating two distinct non-Newtonian rheological properties mediated by an autocatalytic enzyme reaction. Associative polyelectrolytes bearing a small amount of ionic and alkyl groups are engineered: by carefully balancing the charge density and the hydrophobic effect, the polymer solutions demonstrate a unique shear thickening property at low pH while shear thinning at high pH. The urea-urease clock reaction is utilized to program a feedback-induced pH change, leading to a strong upturn of the nonlinear viscoelastic properties. As long as the chemical fuel is supplied, two distinct non-Newtonian states can be achieved with a tunable lifetime span. As a proof of concept, we demonstrate how the physical energy-driven nonequilibrium properties can be manipulated by a chemical-fueled process.  相似文献   

13.
The ionic liquid of 1-allyl-3-methylimidazolium chloride ([amim]Cl) was used as the good solvent to dissolve celluloses. Cellulose concentration covers the range of 0.1-3.0 wt %, spanning both the dilute and semidilute regimes. The rheological properties of the cellulose ionic liquid solutions have been investigated by steady shear and oscillatory shear measurements in this study. In the steady shear measurements, all the cellulose solutions show a shear thinning behavior at high shear rates; however, the dilute cellulose solutions show another shear thinning region at low shear rates, which may reflect the characteristics of the [amim]Cl solvent. In the oscillatory shear measurements, for the dilute regime, the reduced dimensionless moduli are obtained by extrapolation of the viscoelastic measurements for the dilute solutions to infinite dilution. The frequency dependences of the reduced dimensionless moduli are intermediate between the predictions from the Zimm model and elongated rodlike model theories, while the fitting by using a hybrid model combining these two model theories agrees well with the experimental results. For the semidilute regime, the frequency dependences of moduli change from the Zimm-like behavior to the Rouse-like behavior with increasing cellulose concentration. In the studied concentration range, the effects of molecular weight and temperature on solution viscoelasticities and the relationship between steady shear viscosity and dynamic shear viscosity are presented. Results show that the solution viscoelasticity greatly depends on the molecular weight of cellulose; the empirical time-temperature superposition principle holds true at the experimental temperatures, while the Cox-Merz rule fails for the solutions investigated in this study.  相似文献   

14.
A deviation from Graessley's theory of entanglement viscosity appears at very high shear rates when the flow of polydimethylsiloxanes of various molecular weights and their solutions with various concentrations is measured by the capillary method. In order to explain this deviation, a modified Graessley theory is proposed according to the previously reported suggestion that frictional viscosity appears not to be negligible at high shear rates. A reducing procedure taking a frictional viscosity parameter into account was performed. All of the reduced data are combined to give a master curve in spite of a wide range of molecular weight, concentration, and shear rate (from the lower Newtonian to very highest non-Newtonian flow region). The findings from the reducing procedure completely explain the mechanism of non-Newtonian flow for the bulk polymers with various molecular weights, including those below the critical molecular weight for entanglement, and for polymer solutions at any concentration. The viscosity of the linear polymer system consists of the shear-dependent entanglement term ηent proposed by Graessley and the shear-independent frictional term ηfric. The non-Newtonian behavior depends on the ratio of ηentfric at the shear rate of measurement. The ratio of zero-shear entanglement viscosity ηent,0 to ηfric and the critical shear rate for onset of the non-Newtonian flow may be used as a measure of the non-Newtonian behavior of the system and a measure of capability for its rising, respectively. The Graessley theory is to be included in the present modified theory and is applicable to the case of ηentηfric ? 1.  相似文献   

15.
The effect that nanoparticles play in the spreading of nanofluids dynamically wetting and dewetting solid substrates is investigated experimentally, using 'drop shape' analysis technique to analyse aluminium-ethanol contact lines advancing and receding over hydrophobic Teflon-AF coated substrates. Results obtained from the advancing/receding contact line analysis show that the nanoparticles in the vicinity of the three-phase contact line enhance the dynamic wetting behaviour of aluminium-ethanol nanofluids for concentrations up to approximately 1% concentration by weight. Two mechanisms were identified as a potential reason for the observed enhancement in spreading of nanofluids: structural disjoining pressure and friction reduction due to nanoparticle adsorption on the solid surface. The observed 'lubricating effect' that the nanoparticles seem to be inducing is similar to the 'superspreading' effect for surfactant solutions spreading on hydrophobic surfaces, up to a concentration (weight) of approximately 1%, could be a result of the predicted enhanced wetting behaviour. Indeed, Trokhymchuk et al. [Langmuir, 2001, 17, 4940] observed a solid-like ordering of nanoparticles in the vicinity of the three-phase contact line, leading to an increased pressure in the fluid 'wedge'. This increased pressure leads to a pressure gradient which causes the nanofluids to exhibit enhanced wetting characteristics. Another possible cause for the observed increase in advancing/receding contact line velocity could be deposition of nanoparticles on the solid surface in the vicinity of the three-phase contact line resulting in the nanofluid effectively advancing over aluminium rather than Teflon-AF, or the contact line 'rolling' over nanoparticles at the three-phase contact line due to sphericity of nanoparticles. For either of these to be the case, the nanoparticle effect at the three-phase contact line would have to be enhanced for the lower concentration in the same way that it would have to be for the increased pressure in the fluid 'wedge'.  相似文献   

16.
Experimental study is performed to understand and quantify the wall and eccentric retardation effects on spheres settling in shear thinning and shear-thinning viscoelastic fluids over a wide range of diameter ratios (0.02 < λ < 0.9). The four-parameter Carreau viscosity equation has been chosen to represent the apparent viscosity-shear rate of polyacrylamide solutions. Two new wall factor corrections are presented with excellent agreement compared to experimental data.

The terminal settling velocity of a sphere in bounded fluid is significantly reduced by the presence of confining boundaries, named wall retardation effect that decreases due to the shear-thinning behavior of power law fluids, which is weaken further by the elastic effect of viscoelastic fluids. The wall factors of spheres settling in viscoelastic fluids increase at low ξ up to 50, followed by a horizontal confidence region (0.7 ≤ f ≤ 1) at high ξ. In this region, the wall factor is mainly dominated by fluids’ elasticity, which is more distinguished for small spheres. As the settling spheres approach to the wall (b/R → 1), the neighboring wall exert more intensive retardation that reduce the terminal settling velocity greatly when b/R > 0.6 in pure shear-thinning fluids, and the extra retardation effect of nearby wall increases at high concentration due to the enhanced non-Newtonian property. In contrast, the eccentric effect on settling velocity in viscoelastic fluids is cut down greatly by the fluid's elasticity, which is negligible.  相似文献   

17.
The spreading dynamics of power-law fluids, both shear-thinning and shear-thickening fluids, that completely or partially wet solid substrate was investigated theoretically and experimentally. An evolution equation for liquid-film thickness was derived using a lubrication approximation, from which the dynamic contact angle versus the contact line moving velocity relationship was evaluated. In the capillary spreading regime, film thickness h is proportional to xi3/(n+2) (xi is the distance from the contact line), whereas in the gravitational regime, h is proportional to xi1/(n+2), relating to the rheological power exponent n. The derived model fit the experimental data well for a shear-thinning fluid (0.2% w/w xanthan solution) or a shear-thickening fluid (7.5% w/w 10 nm silica in polypropylene glycol) on a completely wetted substrate. The derived model was extended using Hoffmann's proposal for partially wetting fluids. Good agreement was also attained between model predictions and the shear-thinning fluid (1% w/w cmc solution) and shear-thickening fluid (10% w/w 15 nm silica) on partially wetted surfaces.  相似文献   

18.
贺爱华 《高分子科学》2016,34(2):174-184
The effects of weight-average molecular(Mw), molecular weight distribution(MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and/or broader MWD, as well as higher isotacticity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.  相似文献   

19.
We use bead-spring models for a polymer coupled to a solvent described by multiparticle collision dynamics to investigate shear thinning effects in dilute polymer solutions. First, we consider the polymer motion and configuration in a shear flow. For flexible polymer models we find a sharp increase in the polymer radius of gyration and the fluctuations in the radius of gyration at a Weissenberg number approximately 1. We then consider the polymer viscosity and the effect of solvent quality, excluded volume, hydrodynamic coupling between the beads, and finite extensibility of the polymer bonds. We conclude that the excluded volume effect is the major cause of shear thinning in polymer solutions. Comparing the behavior of semiflexible chains, we find that the fluctuations in the radius of gyration are suppressed when compared to the flexible case. The shear thinning is greater and, as the rigidity is increased, the viscosity measurements tend to those for a multibead rod.  相似文献   

20.
Non-equilibrium molecular dynamics have been used to simulate, at a molecular level, fluids undergoing planar Couette flow. The results give a microscopic picture of the processes involved in viscoelasticity, shear dilatancy, shear birefringence, normal stress effects and shear thinning behavior. The calculations prove that shear dilatant fluids are not necessarily shear thickening. The results also suggest that the constitutive relations governing non-Newtonian behavior are non-analytic functions of strain rate.The calculations have led directly to the development of non-linear irreversible thermodynamics. This generalization of thermodynamics provides a macroscopic understanding of such processes as shear induced phase changes and the relation of shear dilatancy to shear induced energy changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号