首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
For a graph G, a zero-sum flow is an assignment of non-zero real numbers on the edges of G such that the total sum of all edges incident with any vertex of G is zero. A zero-sum k-flow for a graph G is a zero-sum flow with labels from the set {±1,…,±(k-1)}. In this paper for a graph G, a necessary and sufficient condition for the existence of zero-sum flow is given. We conjecture that if G is a graph with a zero-sum flow, then G has a zero-sum 6-flow. It is shown that the conjecture is true for 2-edge connected bipartite graphs, and every r-regular graph with r even, r>2, or r=3.  相似文献   

2.
We consider the problem of finding a smallest set of edges whose addition four-connects a triconnected graph. This is a fundamental graph-theoretic problem that has applications in designing reliable networks and improving statistical database security. We present an O(n · α(m, n) + m)-time algorithm for four-connecting an undirected graph G that is triconnected by adding the smallest number of edges, where n and m are the number of vertices and edges in G, respectively, and α(m, n) is the inverse Ackermann function. This is the first polynomial time algorithm to solve this problem exactly.In deriving our algorithm, we present a new lower bound for the number of edges needed to four-connect a triconnected graph. The form of this lower bound is different from the form of the lower bound known for biconnectivity augmentation and triconnectivity augmentation. Our new lower bound applies for arbitrary k and gives a tighter lower bound than the one known earlier for the number of edges needed to k-connect a (k − 1)-connected graph. For k = 4, we show that this lower bound is tight by giving an efficient algorithm to find a set of edges whose size equals the new lower bound and whose addition four-connects the input triconnected graph.  相似文献   

3.
In this paper we define the vertex-cover polynomial Ψ(G,τ) for a graph G. The coefficient of τr in this polynomial is the number of vertex covers V′ of G with |V′|=r. We develop a method to calculate Ψ(G,τ). Motivated by a problem in biological systematics, we also consider the mappings f from {1, 2,…,m} into the vertex set V(G) of a graph G, subject to f−1(x)f−1(y)≠ for every edge xy in G. Let F(G,m) be the number of such mappings f. We show that F(G,m) can be determined from Ψ(G,τ).  相似文献   

4.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integer-valuated functions defined on V(G) such that g(x) ≤f(x) for all xV(G). Then a (g, f)-factor of G is a spanning subgraph H of G such that g(x) ≤d H (x) ≤f(x) for all xV(G). A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let = {F 1, F 2, ..., F m } be a factorization of G and H be a subgraph of G with mr edges. If F i , 1 ≤im, has exactly r edges in common with H, then is said to be r-orthogonal to H. In this paper it is proved that every (mg + kr, mfkr)-graph, where m, k and r are positive integers with k < m and gr, contains a subgraph R such that R has a (g, f)-factorization which is r-orthogonal to a given subgraph H with kr edges. This research is supported by the National Natural Science Foundation of China (19831080) and RSDP of China  相似文献   

5.
In 1970, Folkman proved that for any graph G there exists a graph H with the same clique number as G. In addition, any r ‐coloring of the vertices of H yields a monochromatic copy of G. For a given graph G and a number of colors r let f(G, r) be the order of the smallest graph H with the above properties. In this paper, we give a relatively small upper bound on f(G, r) as a function of the order of G and its clique number. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 40, 493–500, 2012  相似文献   

6.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

7.
Given a graph G and a subgraph H of G, let rb(G,H) be the minimum number r for which any edge-coloring of G with r colors has a rainbow subgraph H. The number rb(G,H) is called the rainbow number of H with respect to G. Denote as mK2 a matching of size m and as Bn,k the set of all the k-regular bipartite graphs with bipartition (X,Y) such that X=Y=n and kn. Let k,m,n be given positive integers, where k≥3, m≥2 and n>3(m−1). We show that for every GBn,k, rb(G,mK2)=k(m−2)+2. We also determine the rainbow numbers of matchings in paths and cycles.  相似文献   

8.
We consider a large-scale directed graph G = (V, E) whose edges are endowed with a family of characteristics. A subset of vertices of the graph, V′ ⊂ V, is selected and some additional conditions are imposed on these vertices. An algorithm for reducing the optimization problem on the graph G to an optimization problem on the graph G′ = (V′, E′) of a lower dimension is developed. The main steps of the solution and some methods for constructing an approximate solution to the problem on the transformed graph G′ are presented.__________Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 1, pp. 235–251, 2003.  相似文献   

9.
Let G be a simple graph. The achromatic number ψ(G) is the largest number of colors possible in a proper vertex coloring of G in which each pair of colors is adjacent somewhere in G. For any positive integer m, let q(m) be the largest integer k such that ≤ m. We show that the problem of determining the achromatic number of a tree is NP-hard. We further prove that almost all trees T satisfy ψ (T) = q(m), where m is the number of edges in T. Lastly, for fixed d and ϵ > 0, we show that there is an integer N0 = N0(d, ϵ) such that if G is a graph with maximum degree at most d, and mN0 edges, then (1 - ϵ)q(m) ≤ ψ (G) ≤ q(m). © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 129–136, 1997  相似文献   

10.
For a fixed multigraph H with vertices w1,…,wm, a graph G is H-linked if for every choice of vertices v1,…,vm in G, there exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k-linked, k-connected, and k-ordered graphs.Given a connected multigraph H with k edges and minimum degree at least two and n7.5k, we determine the least integer d such that every n-vertex simple graph with minimum degree at least d is H-linked. This value D(H,n) appears to equal the least integer d such that every n-vertex graph with minimum degree at least d is b(H)-connected, where b(H) is the maximum number of edges in a bipartite subgraph of H.  相似文献   

11.
Given a bipartite graph G with n nodes, m edges, and maximum degree Δ, we find an edge-coloring for G using Δ colors in time T + O(m log Δ), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k ≤ Δ. Together with best known bounds for T this implies on edge-coloring algorithm which improves on the algorithm of Hopcroft and Cole. Our algorithm can also be used to find a (Δ + 2)-edge-coloring for G in time O(m log Δ). The previous best approximation algorithm with the same time bound needed Δ + log Δ colors.  相似文献   

12.
Say a graph H selects a graph G if given any coloring of H, there will be a monochromatic induced copy of G in H or a completely multicolored copy of G in H. Denote by s(G) the minimum order of a graph that selects G and set s(n) = max {s(G): |G| = n}. Upper and lower bounds are given for this function. Also, consider the Folkman function fr(n) = max{min{|V(H)|: H → (G)1r}: |V(G)| = n}, where H → (G)1r indicates that H is vertex Ramsey to G, that is, any vertex coloring of H with r colors admits a monochromatic induced copy of G. The method used provides a better upper bound for this function than was previously known. As a tool, we establish a theorem for projective planes.  相似文献   

13.
For a simple graph G?=?(𝒱, ?) with vertex-set 𝒱?=?{1,?…?,?n}, let 𝒮(G) be the set of all real symmetric n-by-n matrices whose graph is G. We present terminology linking established as well as new results related to the minimum rank problem, with spectral properties in graph theory. The minimum rank mr(G) of G is the smallest possible rank over all matrices in 𝒮(G). The rank spread r v (G) of G at a vertex v, defined as mr(G)???mr(G???v), can take values ??∈?{0,?1,?2}. In general, distinct vertices in a graph may assume any of the three values. For ??=?0 or 1, there exist graphs with uniform r v (G) (equal to the same integer at each vertex v). We show that only for ??=?0, will a single matrix A in 𝒮(G) determine when a graph has uniform rank spread. Moreover, a graph G, with vertices of rank spread zero or one only, is a λ-core graph for a λ-optimal matrix A in 𝒮(G). We also develop sufficient conditions for a vertex of rank spread zero or two and a necessary condition for a vertex of rank spread two.  相似文献   

14.
We analyze a randomized greedy matching algorithm (RGA) aimed at producing a matching with a large number of edges in a given weighted graph. RGA was first introduced and studied by Dyer and Frieze in [3] for unweighted graphs. In the weighted version, at each step a new edge is chosen from the remaining graph with probability proportional to its weight, and is added to the matching. The two vertices of the chosen edge are removed, and the step is repeated until there are no edges in the remaining graph. We analyze the expected size μ(G) of the number of edges in the output matching produced by RGA, when RGA is repeatedly applied to the same graph G. Let r(G)=μ(G)/m(G), where m(G) is the maximum number of edges in a matching in G. For a class 𝒢 of graphs, let ρ(𝒢) be the infimum values r(G) over all graphs G in 𝒢 (i.e., ρ is the “worst” performance ratio of RGA restricted to the class 𝒢). Our main results are bound for μ, r, and ρ. For example, the following results improve or generalize similar results obtained in [3] for the unweighted version of RGA; \begin{eqnarray*}r(G)&\ge&{1\over 2-|V|/2|E|}\quad \mbox{(if $G$ has a perfect matching)}\\ {\sqrt{26}-4\over 2}&\le&\rho(\hbox{\sf SIMPLE PLANAR GRAPHS})\le.68436349\\ \rho(\hbox{SIMPLE $\Delta$-GRAPHS})&\ge&{1\over2}+{\sqrt{(\Delta-1)^2+1}-(\Delta-1)\over2}\end{eqnarray*} (where the class is the set of graphs of maximum degree at most Δ). © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 10 : 353–383, 1997  相似文献   

15.
All graphs considered are finite, undirected, with no loops, no multiple edges and no isolated vertices. For two graphsG, H, letN(G, H) denote the number of subgraphs ofG isomorphic toH. Define also, forl≧0,N(l, H)=maxN(G, H), where the maximum is taken over all graphsG withl edges. We determineN(l, H) precisely for alll≧0 whenH is a disjoint union of two stars, and also whenH is a disjoint union ofr≧3 stars, each of sizes ors+1, wheresr. We also determineN(l, H) for sufficiently largel whenH is a disjoint union ofr stars, of sizess 1s 2≧…≧s r>r, provided (s 1s r)2<s 1+s r−2r. We further show that ifH is a graph withk edges, then the ratioN(l, H)/l k tends to a finite limit asl→∞. This limit is non-zero iffH is a disjoint union of stars.  相似文献   

16.
A graph H is called a supersubdivison of a graph G if H is obtained from G by replacing every edge uv of G by a complete bipartite graph K2,m (m may vary for each edge) by identifying u and v with the two vertices in K2,m that form one of the two partite sets. We denote the set of all such supersubdivision graphs by SS(G). Then, we prove the following results.
1. Each non-trivial connected graph G and each supersubdivision graph HSS(G) admits an α-valuation. Consequently, due to the results of Rosa (in: Theory of Graphs, International Symposium, Rome, July 1966, Gordon and Breach, New York, Dunod, Paris, 1967, p. 349) and El-Zanati and Vanden Eynden (J. Combin. Designs 4 (1996) 51), it follows that complete graphs K2cq+1 and complete bipartite graphs Kmq,nq can be decomposed into edge disjoined copies of HSS(G), for all positive integers m,n and c, where q=|E(H)|.
2. Each connected graph G and each supersubdivision graph in SS(G) is strongly n-elegant, where n=|V(G)| and felicitous.
3. Each supersubdivision graph in EASS(G), the set of all even arbitrary supersubdivision graphs of any graph G, is cordial.
Further, we discuss a related open problem.  相似文献   

17.
Given two graphs G and H, let f(G,H) denote the maximum number c for which there is a way to color the edges of G with c colors such that every subgraph H of G has at least two edges of the same color. Equivalently, any edge-coloring of G with at least rb(G,H)=f(G,H)+1 colors contains a rainbow copy of H, where a rainbow subgraph of an edge-colored graph is such that no two edges of it have the same color. The number rb(G,H) is called the rainbow number ofHwith respect toG, and simply called the bipartite rainbow number ofH if G is the complete bipartite graph Km,n. Erd?s, Simonovits and Sós showed that rb(Kn,K3)=n. In 2004, Schiermeyer determined the rainbow numbers rb(Kn,Kk) for all nk≥4, and the rainbow numbers rb(Kn,kK2) for all k≥2 and n≥3k+3. In this paper we will determine the rainbow numbers rb(Km,n,kK2) for all k≥1.  相似文献   

18.
Let H and G be two finite graphs. Define h H (G) to be the number of homomorphisms from H to G. The function h H (·) extends in a natural way to a function from the set of symmetric matrices to ℝ such that for A G , the adjacency matrix of a graph G, we have h H (A G ) = h H (G). Let m be the number of edges of H. It is easy to see that when H is the cycle of length 2n, then h H (·)1/m is the 2n-th Schatten-von Neumann norm. We investigate a question of Lovász that asks for a characterization of graphs H for which the function h H (·)1/m is a norm.  相似文献   

19.
Let ??(n, m) denote the class of simple graphs on n vertices and m edges and let G ∈ ?? (n, m). There are many results in graph theory giving conditions under which G contains certain types of subgraphs, such as cycles of given lengths, complete graphs, etc. For example, Turan's theorem gives a sufficient condition for G to contain a Kk + 1 in terms of the number of edges in G. In this paper we prove that, for m = αn2, α > (k - 1)/2k, G contains a Kk + 1, each vertex of which has degree at least f(α)n and determine the best possible f(α). For m = ?n2/4? + 1 we establish that G contains cycles whose vertices have certain minimum degrees. Further, for m = αn2, α > 0 we establish that G contains a subgraph H with δ(H) ≥ f(α, n) and determine the best possible value of f(α, n).  相似文献   

20.
Let G be a simple graph. Let g(x) and f(x) be integer-valued functions defined on V(G) with g(x)≥2 and f(x)≥5 for all xV(G). It is proved that if G is an (mg+m−1, mfm+1)-graph and H is a subgraph of G with m edges, then there exists a (g,f)-factorization of G orthogonal to H. Received: January 19, 1996 Revised: November 11, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号