首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Folgar–Tucker model, which is widely-used to predict fiber orientation in injection-molded composites, accounts for fiber–fiber interactions using isotropic rotary diffusion. However, this model does not match all aspects of experimental fiber orientation data, especially for composites with long discontinuous fibers. This paper develops a fiber orientation model that incorporates anisotropic rotary diffusion. From kinetic theory we derive the evolution equation for the second-order orientation tensor, correcting some errors in earlier treatments. The diffusivity is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Model parameters are selected by matching the experimental steady-state orientation in simple shear flow, and by requiring stable steady states and physically realizable solutions. Also, concentrated fiber suspensions align more slowly with respect to strain than models based on Jeffery's equation, and we incorporate this behavior in an objective way. The final model is suitable for use in mold filling and other flow simulations, and it gives improved predictions of fiber orientation for injection molded long-fiber composites.  相似文献   

2.
The structure changes in the start-up flow of the thermotropic liquid crystalline polymer Vectra 8950 are probed by performing transient experiments after various flow histories. The shear and normal stress growth curves of a squeezed sample and of a randomly oriented sample show a pronounced overshoot at low strains, whereas the stress growth curve of a sample pre-sheared until steady state shows a gradual increase. This first peak is associated with the re-orientation of the director into the shearing plane. All stress transients show a second broad maximum at large strains that results from the generation of a steady defect network. The effect of varying the relaxation period after pre-shearing is reflected in the appearance of two peaks in the subsequent stress growth curves. One of these peaks shifts linearly with re laxation period and the other is more or less fixed in position. The orientation of the molecules during steady shear flow is on average in the flow direction. Intermediate orientation levels may exist in the transient depending on the amount of strain. The material is able to maintain the flow-induced orientation distribution for a long time after cessation of flow. This is reflected in a similar fashion in the initial magnitudes of the stresses and the dynamic moduli after various preshear strains. Moreover, the dynamic moduli decrease with time after cessation of steady shear flow, indicating that the orientation increases during relaxation.  相似文献   

3.
A numerical model for predicting the flow and orientation state of semi-dilute, rigid fiber suspensions in a tapered channel is presented. The effect of the two-way flow/fiber coupling is investigated for low Reynolds number flow using the constitutive model of Shaqfeh and Fredrickson. An orientation distribution function is used to describe the local orientation state of the suspension and evolves according to a Fokker–Plank type equation. The planar orientation distribution function is determined along streamlines of the flow and is coupled with the fluid momentum equations through a fourth-order orientation tensor. The coupling term accounts for the two-way interaction and momentum exchange between the fluid and fiber phases. The fibers are free to interact through long range hydrodynamic fiber–fiber interactions which are modeled using a rotary diffusion coefficient, an approach outlined by Folgar and Tucker. Numerical predictions are made for two different orientation states at the inlet to the contraction, namely a fully random and a partially aligned fiber orientation state. Results from these numerical predictions show that the streamlines of the flow are altered and that velocity profiles change from Jeffery–Hamel, to something resembling a plug flow when the fiber phase is considered in the fluid momentum equations. This phenomenon was found when the suspension enters the channel in either a pre-aligned, or in a fully random orientation state. When the suspension enters the channel in an aligned orientation state, fiber orientation is shown to be only marginally changed when the two-way coupling is included. However, significant differences between coupled and uncoupled predictions of fiber orientation were found when the suspension enters the channel in a random orientation state. In this case, the suspension was shown to align much more quickly when the mutual coupling was accounted for and profiles of the orientation anisotropy were considerably different both qualitatively and quantitatively.  相似文献   

4.
The shear and extensional rheology of three concentrated poly(ethylene oxide) solutions is examined. Shear theology including steady shear viscosity, normal stress difference and linear viscoelastic material functions all collapse onto master curves independent of concentration and temperature. Extensional flow experiments are performed in fiber spinning and opposed nozzles geometries. The concentration dependence of extensional behavior measured using both techniques is presented. The zero-shear viscosity and apparent extensional viscosities measured with both extensional rheometers exhibit a power law dependence with polymer concentration. Strain hardening in the fiber spinning device is found to be of similar magnitude for all test fluids, irrespective of strain rate. The opposed nozzle device measures an apparent extensional viscosity which is one order of magnitude smaller than the value determined with the fiber spinline device. This could be attributed to errors caused by shear, dynamic pressure, and the relatively small strains developed in the opposed nozzle device. This instrument cannot measure local kinematics or stresses, but averages these values over the non-homogenous flow field. These results show that it is not possible to measure the extensional viscosity of non-Newtonian and shear thinning fluids with this device. Fiber spin-line experiments are coupled with a momentum balance and constitutive model to predict stress growth and diameter profiles. A one-mode Giesekus model accurately captures the plateau values of steady and dynamic shear properties, but fails to capture the gradual shear thinning of viscosity. Giesekus model parameters determined from shear rheology are not capable of quantitatively predicting fiber spinline kinematics. However, model parameters fit to a single spinline experiment accurately predict stress growth behavior for different applied spinline tensions.  相似文献   

5.
The basic thermodynamic ideas from rubber-elasticity theory which Leonov employed to derive his constitutive model are herein summarized. Predictions of the single-mode version are presented for homogeneous elongational flows including stress growth following start-up of steady flow, stress decay following sudden stretching and following cessation of steady flow, elastic recovery following cessation of steady flow, energy storage in steady-state flow, and the velocity profile in constantforce spinning. Using parameters of the multiple-mode version which fit the linearviscoelastic data, the Leonov-model predictions of elongational stress growth during, and elastic recovery following, steady elongation are calculated numerically and compared to the experimental results for Melt I and to the Wagner model. It is found that the Leonov model, as originally formulated, agrees qualitatively with the data, but not quantitatively; the Wagner model gives quantitative agreement, but requires much nonlinear data with which to fit model parameters. Quantitative agreement can be obtained with the Leonov model, if the nonequilibrium potential which relates recoverable strain to strain rate is adjusted empirically. This can most simply be done by making each relaxation time dependent upon the recoverable strain. The Leonov model, unlike the Wagner model, is derived from an entropic constitutive equation, which is advantageous for calculating stored elastic energy or viscous dissipation. The Leonov model also has an appealingly simple differential form, similar to the upper-convected Maxwell model, which, in numerical calculations, may be an important advantage over the integral Wagner model.  相似文献   

6.
 Coupling between flow and diffusion at symmetric polymer/polymer interfaces has been investigated. Polystyrene/polystyrene sandwich assemblies were subjected to large-amplitude oscillatory shear (LAOS) using a sliding-plate rheometer (SPR) and the stress was monitored as a function of time. The results were treated using a new model combining Wagner's model with the theory of Doi and Edwards. The model explicitly expresses the influence of the strain and stress amplitudes frequency and time on the self-diffusion process. The apparent self-diffusion coefficient was found to increase with welding time, in agreement with our previous results obtained using small-amplitude oscillatory shear measurements. However, it was found in the present case that the self-diffusion coefficient depends strongly on the strain and stress amplitudes and frequency, and its steady state value was found to be larger than that determined from small-amplitude oscillatory shear measurements. It appears that the large strain oscillatory shear field continuously increases the density of chain ends at the interface and thus increases the flux of mass transport. Received: 30 January 2001 Accepted: 12 June 2001  相似文献   

7.
李斌  朱志武  李涛 《爆炸与冲击》2022,42(9):166-180
以典型冻土为研究对象,通过不同冻融循环次数的冻融循环实验、不同温度的冻结实验以及不同应变率的冲击动态实验,综合研究了冻融循环冻土的冲击动态力学性能。结果表明,冻土存在冻融循环效应,随着冻融循环次数的增加,冻土的峰值应力有一定程度的降低,但在达到临界冻融循环次数后,峰值应力将维持稳定;同时,冻土表现出明显的应变率效应和温度效应,其峰值应力随应变率的增加或温度的降低而增加。通过定义冻融损伤因子,推导满足Weibull分布的冲击损伤,提出了一个基于Z-W-T方程的损伤黏弹性本构模型。该模型可较好地描述冻融循环后冻土的冲击动态力学行为,为研究季节性冻土区冻土的冲击动态破坏提供参考。  相似文献   

8.
Transient rheological features of anisotropic 30 and 40 wt.% ethyl-cellulose/m-cresol solutions were investigated, taking as a reference other lyotropes like poly(γ-benzylglutamate) in m-cresol, poly(p-phenylene-terephthalamide) in sulfuric acid and hydroxypropylcellulose in water. Strain scaling oscillations before reaching steady state, with a half-period of 20 strain units for 30 wt.% and 22.5 strain units for 40 wt.% in both stress growth and transient viscosity in creep, revealed that director tumbling takes place for ethylcellulose solutions. Large strain recoveries (2–3 strain units) obtained in recoil experiments confirmed the hypothesis of a tumbling regime. In contrast to the majority of reported lyotropes, we did not observe a master curve of strain recovery versus the product of preshear rate by time. This result appears to be associated with the existence of another mechanism of relaxation, in addition to unwinding of the defect texture created by tumbling. Dynamic viscoelastic results after cessation of flow suggest that a slower mechanism of relaxation, associated with texture or polydomain coarsening, takes place. Received: 28 July 1998 Accepted: 10 December 1998  相似文献   

9.
H. M. Laun 《Rheologica Acta》1982,21(4-5):464-469
At high shear rates a steady state of shear flow with constant shear rate, constant shear stress, and constant recoverable shear strain is observed in the short-time sandwich rheometer after some few shear units already. The melt exhibits rather high elastic shear deformations and the recovery occurs at much higher speed than it is observed in the newtonian range. The ratio of first normal stress difference and twice the shear stress, being equal to the recoverable strain in the second-order fluid limit, significantly underestimates the true elastic shear strains at high shear rates. The observed shear rate dependence of shear stress and first normal stress difference as well as of the (constrained) elastic shear strain is correctly described on the basis of a discrete relaxation time spectrum. In simple shear a stick-slip transition at the metal walls is found. Necessary for the onset of slip is a critical value of shear stress and a certain amount of elastic shear deformation or orientation of the melt.  相似文献   

10.
A finite element analysis is conducted to determine the three-dimensional stress field in a composite laminate with a pin-loaded hole. The accuracy of computation is established by comparison with the strain gauge measurements near and away from the hole boundary. An acoustic emission technique was used to determine the initial failure load as the specimen was subjected to a quasi-static loading rate. Specimens were examined between the load steps using radiography and micrography in order to detect delamination initiation. The delamination initiation site and the corresponding load level are predicted by applying the strain energy density criterion. The critical parameters were extracted from the experimental measurements and finite element analysis of a double cantilever beam specimen. The analysis predictions indicate that delaminations could initiate close to the free surface at the interface between layers with a fiber orientation of ±45° relative to the load direction. These predictions confirm the experimental observations.  相似文献   

11.
新型铝锡硅合金高温塑性变形流变应力的研究   总被引:8,自引:0,他引:8  
采用高温等温压缩变形方法,在温度为373-673K范围和应变速率为0.001-1.0s^-1范围内,测定了新型Al-10Sn-4Si合金的流变应力曲线,结果表明,该合金为正应变速率敏感材料并且具有稳态流变特征;稳态流变应力随变形速率的增加而增大,随变形温度的升高而降低,通过回归分析,建立了该合金高温塑性变形时稳态流变应力的半经验方程,这种稳态流变特征与动态回复、动态再结晶及局部晶界粘滞性流动行为有关,受热激活过程控制。  相似文献   

12.
In order to eventually predict the behavior of long fiber suspensions in complex flows commonly found in processing operations, it is necessary to understand their rheology and its connection to the evolution of fiber orientation and configuration in well defined flows. In this paper we report the transient behavior at the startup of shear flow of a polymer melt containing long glass fibers with a length (L) >1 mm, using a sliding plate rheometer (SPR). The operation of the SPR was confirmed by comparing the transient shear viscosity (η+) for a polymer melt and a melt containing short glass fibers (L < 1 mm) with measurements obtained from a cone-and-plate device, using a modified sample geometry that was designed to avoid wall effects. For the long fiber systems, measurements could only be obtained in the SPR because these systems would not stay within the gap of the rotational rheometer. Transient stress growth behavior of the long fiber systems was obtained as a function of shear rate and fiber concentration for samples prepared with three different initial orientations. Results showed that, unlike short fiber systems (with a random planar initial orientation) that usually exhibit a single overshoot peak followed by a steady state, η+ of the long fiber suspensions often passed through multiple transient regions, depending on the fiber concentration and applied shear rate. Additionally, η+ of the long fiber suspensions was found to be highly dependent on the initial orientation of the sheared samples. Finally, the initial and final fiber orientations of the long glass fiber samples were measured and used to initiate an explanation of the viscosity behavior. The results obtained in this research will be useful for future assessment of a quantitative correlation between transient rheology and the evolution of fiber orientation.  相似文献   

13.
An integrated mechanical model for fiber-laden membranes is presented and representative predictions of relevance to cellulose ordering and orientation in the plant cell wall are presented. The model describes nematic liquid crystalline self-assembly of rigid fibers on an arbitrarily curved fluid membrane. The mechanics of the fluid membrane is described by the Helfrich bending-torsion model, the fiber self-assembly is described by the 2D Landau-de Gennes quadrupolar Q-tensor order parameter model, and the fiber-membrane interactions (inspired by an extension of the 2D Maier-Saupe model to curved surfaces) include competing curvo-philic (curvature-seeking) and curvo-phobic (curvature-avoiding) effects. Analysis of the free energy reveals three fiber orientation regimes: (a) along the major curvature, (b) along the minor curvature, (c) away from the principal curvatures, according to the competing curvo-philic and curvo-phobic interactions. The derived shape equation (normal stress balance) now includes curvature-nematic ordering contributions, with both bending and torsion renormalizations. Integration of the shape and nematic order equations gives a complete model whose solution describes the coupled membrane shape/fiber order state. Applications to cylindrical membranes, relevant to the plant cell wall, shows how growth decreases the fiber order parameter and moves the fibers’ director from the axial direction towards the azimuthal orientation, eventually leading to a state of stress predicted by pure membranes. The ubiquitous 54.7° cellulose fibril orientation with respect to the long axis in a cylindrical plant cell wall is shown to be predicted by the preset model when the ratio of curvo-phobic and curvo-philic interactions is in the range of the cylinder radius.  相似文献   

14.
The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) the stress growth at constant strain rate, (ii) the stress growth at constant speed and (iii) the elastic recovery in elongational flow. The model parameters have been determined from the available rheological data obtained either in steady shear flow (shear viscosity and first normal-stress difference as a function of shear rate) or oscillatory flow (storage and loss moduli as a function of frequency in the linear region) or from extensional flow at very small strain rates (time-dependent elongation viscosity in the linear viscoelastic limit). In addition, the effect of the parameter characterizing the strain-hardening of the material during elongation has also been studied. The estimation of this parameter has been based upon the structural characteristics of the polymer chain which include the critical molecular weight and molecular weight of an independent segment. Five different polymer melts have been considered with varying number of modes (maximum four modes). Resulting predictions are in fair agreement with corresponding experimental data in the literature.  相似文献   

15.
The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a commercial filament stretching rheometer (VADER-1000). We show that the measurements from the EVF are limited by a maximum Hencky strain of 4, while the two filament stretching rheometers are able to probe the nonlinear behavior at larger Hencky strain values where the steady state is reached. With the capability of the filament stretching rheometers, we show that LDPEs with quite different linear viscoelastic properties can have very similar steady extensional viscosity. This points to the potential for independently controlling shear and extensional rheology in certain rate ranges.  相似文献   

16.
Details are given of a study to obtain experimental data in an idealized environment for the purpose of evaluating the corresponding computational predictions and which supplement parallel measurements made in actual packaged air-conditioning units. The system consisted of a purpose-built low-speed wind tunnel with a working section constructed to reproduce particular features of the real units. In the experiment, both the mean velocity profiles and turbulence properties of the flow are obtained from triple-hot-wire anemometry measurements. A numerical model, based on finite volume methodology, was used to obtain the solution of the Reynolds-averaged Navier–Stokes equations for incompressible isothermal flow. The Reynolds stress terms in the equations are calculated using the standard k–ϵ model and second-moment closure (Reynolds stress) models. The accuracy of the two models was evaluated against the experimental measurements made 10 mm downstream of a baffle. The results show that the standard k–ϵ model gave the better agreement except in regions of strong recirculation. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the numerical simulation of planar entry flow using a penalty finite element method and the comparison of predictions with flow visualization and birefringence data for two polymer melts. The Phan-Thien Tanner (PTT) model was fit to the steady state shear and extensional viscosity data and the transient extensional viscosity data of both polystyrene and low-density polyethylene (LDPE) melts to obtain the parameters λ, ξ, and ϵ in this model. Agreement was found between the flow visualization and birefringence data and the predictions of streamlines and stress. With some modification of the constitutive equation, the vortex growth and intensity observed for LDPE could be predicted by the use of the PTT model and the material parameters fit to the rheological properties. Likewise, the flow behavior of polystyrene, in which only small vortices with no growth were observed, was also predicted. Furthermore, it was found that the size and intensity of the vortex could be affected by the parameter ϵ in the PTT model which controls the predictions of the extensional viscosity. Based on these results it seems that accurate simulation of entry flow behavior requires the use of a constitutive equation which is capable of giving realistic preciction's of a fluid's extentional flow properties.  相似文献   

18.
The development of flow kinematics and fiber orientation distribution from the parabolic velocity profile and isotropic orientation at the channel inlet was computed in multi-disperse suspension flow through a parallel plate channel and their predictions were compared with those of mono- and bi-disperse suspensions. A statistical scheme (orientations of a large number of fibers are evaluated from the solution of the Jeffery equation along the streamlines) was confirmed to be very useful and feasible method to analyze accurately the orientation distribution of fibers in multi-disperse fiber suspension flow as well as mono- and bi-dispersions, instead of direct solutions of the orientation distribution function of fibers or the evolution equation of the orientation tensor which involves a closure equation. It was found that the flow kinematics and the fiber orientation depend completely on both the fiber aspect-ratio and the fiber parameter for multi-disperse suspension when the fiber–fiber and fiber-wall interactions are neglected. Furthermore, the addition of large aspect-ratio fibers as well as an increase in the fiber parameter related to the large aspect-ratio fibers could suppress the complex velocity field and stress distributions which are observed in suspensions containing small aspect-ratio fibers. From a practical point of view, therefore, the mechanical and physical properties of fiber composites should be improved with an increase in the volume fraction of large aspect-ratio fibers.  相似文献   

19.
We report steady and transient measurements of particle orientation in a clay dispersion subjected to shear flow. An organically modified clay is dispersed in a Newtonian polymer matrix at a volume fraction of 0.02, using methods previously reported by Mobuchon et al. (Rheol Acta 46: 1045, 2007). In accord with prior studies, mechanical rheometry shows yield stress-like behavior in steady shear, while time dependent growth of modulus is observed following flow cessation. Measurements of flow-induced orientation in the flow-gradient plane of simple shear flow using small-angle and wide-angle X-ray scattering (SAXS and WAXS) are reported. Both SAXS and WAXS reveal increasing particle orientation as shear rate is increased. Partial relaxation of nanoparticle orientation upon flow cessation is well correlated with time-dependent changes in complex modulus. SAXS and WAXS data provide qualitatively similar results; however, some quantitative differences are attributed to differences in the length scales probed by these techniques.  相似文献   

20.
The jerky flow in an Al–Mg alloy is studied during simple shear tests at room temperature and various strain rates. Direct observations of the sample surface using digital image correlation allow the study of the type and the dynamics of bands associated to plastic instabilities as a function of shear strain and shear strain rate. The paper features that both Piobert–Lüders and Portevin–Le Chatelier phenomena can be observed for a simple shear stress state at room temperature. The nucleation, growth and movement of the bands are described: it is shown that the kinematics of the bands is similar to those observed in tension but that the orientation of the bands varies with the shear strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号