首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A series of porphyrins fused with acenaphthylene, phenanthroline, and benzofluoranthene polycyclic aromatic rings were prepared by means of a 3+1 porphyrin synthesis approach and subsequent retro‐Diels–Alder reaction of bicyclo[2.2.2]octadiene‐fused precursors. Analysis of the magnetic circular dichroism spectra and the results of time‐dependent DFT calculations are used to identify the reasons for the trends observed in the wavelengths and relative intensities of the Q bands of the products. Michl's perimeter model is used as a conceptual framework to explain the changes in the relative energies of the frontier π‐molecular orbitals.  相似文献   

2.
New opp‐dibenzoporphyrins were prepared in a concise method that was based on a Pd0‐catalyzed cascade reaction. These porphyrins, which contained carboxylic‐acid linker groups on benzene rings that were fused to the porphyrin at their β,β′‐positions, were examined as sensitizers for dye‐sensitized solar cells for the first time. Whereas all of the porphyrins showed solar‐energy‐to‐electricity conversion, an opp‐dibenzoporphyrin with conjugated carboxylic‐acid linkers displayed the highest conversion efficiency and an exceptionally high Jsc value. Cyclic voltammetry of these porphyrins suggested that the fusion of two aromatic benzene rings onto the periphery of the porphyrin lowered the HOMO–LUMO energy gap; the incorporation of a conjugated carboxylic‐acid linker group decreased the HOMO–LUMO gap even further. These CV data are consistent with DFT calculations for these porphyrins and agree well with the UV/Vis absorption‐ and fluorescence spectra of these porphyrins.  相似文献   

3.
Bicyclo[2.2.2]octadiene-connected pyrrolo-porphyrins have been prepared by an inverse-type [3+1] porphyrin synthesis of a bicyclo[2.2.2]octadiene-fused dipyrrole with a tripyrrane dicarbaldehyde. Another [3+1] porphyrin synthesis of pyrrole-connected porphyrins with the same or other tripyrrane dicarbaldehydes gave bicyclo[2.2.2]octadiene-bridged diporphyrins, the central metals and/or peripheral substituents of which were different. Thermal decomposition of the bicyclo[2.2.2]octadiene skeleton to a benzene moiety gave pi-system-fused porphyrin dimers in a highly pure form.  相似文献   

4.
The ring‐fused thiophene derivatives benzo[c]thiophene and its precursor bicyclo[2.2.2]octadiene (BCOD) have been introduced as π‐conjugated spacers for organic push–pull sensitizers with dihexyloxy‐substituted triphenylamine as donor and cyanoacrylic acid as acceptor ( OL1 , OL2 , OL3 , OL4 , OL5 , OL6 ). The effects of the fused ring on the spectroscopic and electrochemical properties of these sensitizers and their photovoltaic performance in dye‐sensitized solar cells have been evaluated. Introduction of a binary benzo[c]thiophene and ethylenedioxy thiophene as π bridge caused a significant red shift of the characteristic intramolecular charge‐transfer band to 642 nm. It is found that the sensitizer OL3 , which contains one benzo[c]thiophene unit as π linker, gives the highest overall conversion efficiency of 5.03 % among all these dyes.  相似文献   

5.
The synthesis of a series of novel core‐modified and fused‐ring‐expanded tetraphenylporphyrins is reported. Theoretical calculations and magnetic circular dichroism (MCD) and fluorescence spectroscopic measurements were used to analyze the effect of core modification with Group 16 oxygen, sulfur, selenium, and tellurium atoms on the optical properties and electronic structures of the porphyrins. Marked redshifts of the Q and B bands and accelerated intersystem‐crossing rates were observed, thus making these compounds potentially suitable for use in a variety of applications. The scope for further fine‐tuning of these optical properties based on additional structural modifications, such as the incorporation of fused benzene rings to form ABAB structures by using a thiophene precursor with a fused bicyclo[2.2.2]octadiene ring and the introduction of various substituents onto the meso‐phenyl rings, is also examined.  相似文献   

6.
Novel meso‐ or β‐derivatized porphyrins with a carboxyl group have been designed and synthesized for use as sensitizers in dye‐sensitized solar cells (DSSCs). The position and nature of a bridge connecting the porphyrin ring and carboxylic acid group show significant influences on the spectral, electrochemical, and photovoltaic properties of these sensitizers. Absorption spectra of porphyrins with a phenylethynyl bridge show that both Soret and Q bands are red‐shifted with respect to those of porphyrin 6 . This phenomenon is more pronounced for porphyrins 3 and 4 , which have a π‐conjugated electron‐donating group at the meso position opposite the anchoring group. Upon introduction of an ethynylene group at the meso position, the potential at the first oxidation alters only slightly whereas that for the first reduction is significantly shifted to the positive, thus indicating a decreased HOMO–LUMO gap. Quantum‐chemical (DFT) results support the spectroelectrochemical data for a delocalization of charge between the porphyrin ring and the amino group in the first oxidative state of diarylamino‐substituted porphyrin 5 , which exhibits the best photovoltaic performance among all the porphyrins under investigation. From a comparison of the cell performance based on the same TiO2 films, the devices made of porphyrin 5 coadsorbed with chenodeoxycholic acid (CDCA) on TiO2 in ratios [ 5 ]/[CDCA]=1:1 and 1:2 have efficiencies of power conversion similar to that of an N3 ‐based DSSC, which makes this green dye a promising candidate for colorful DSSC applications.  相似文献   

7.
A synthetic method to obtain an arsole‐containing π‐conjugated polymer by the post‐transformation of the organotitanium polymer titanacyclopentadiene‐2,5‐diyl unit with an arsenic‐containing building block is described. The UV/Vis absorption maximum and onset of the polymer were observed at 517 nm and 612 nm, respectively. The polymer exhibits orange photoluminescence with an emission maximum (Emax) of 600 nm and the quantum yield (Φ) of 0.05. The polymer proved to exhibit a quasi‐reversible redox behavior in its cyclic voltammetric (CV) analysis. The energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were estimated to be ?5.43 and ?3.24 eV, respectively, from the onsets for oxidation and reduction signals in the CV analysis. Further chemical modification of the arsole unit in the π‐conjugated polymer by complexation of gold(I) chloride occurred smoothly resulting in the bathochromic shift of the UV/Vis absorption and lowering of the LUMO energy level.  相似文献   

8.
Trifluoroacetic acid‐catalyzed condensation of pyrrole with electron‐deficient and sterically hindered 3,5‐bis(trifluoromethyl)benzaldehyde results in the unexpected production of a series of meso‐3,5‐bis(trifluoromethyl)phenyl‐substituted expanded porphyrins including [22]sapphyrin 2 , N‐fused [22]pentaphyrin 3 , [26]hexaphyrin 4 , and intact [32]heptaphyrin 5 together with the conventional 5,10,15,20‐tetrakis(3,5‐bis(trifluoromethyl)phenyl)porphyrin 1 . These expanded porphyrins are characterized by mass spectrometry, 1H NMR spectroscopy, UV/Vis/NIR absorption spectroscopy, and fluorescence spectroscopy. The optical and electrochemical measurements reveal a decrease in the HOMO–LUMO gap with increasing size of the conjugated macrocycles, and in accordance with the trend, the deactivation of the excited singlet state to the ground state is enhanced.  相似文献   

9.
Singly and doubly 1,2‐phenylene‐inserted NiII porphyrin arch‐tape dimers 3 and 9 were synthesized from the corresponding β‐to‐β 1,2‐phenylene‐bridged NiII porphyrin dimers 5 and 11 via Ni0‐mediated reductive cyclization and DDQ/Sc(OTf)3‐promoted oxidative cyclization as key steps, respectively. Owing to the fused eight‐membered ring(s), 3 showed a more contorted structure than those of previously reported arch‐tape dimers 2 a and 2 b possessing a fused seven‐membered ring. Furthermore, 9 displayed much larger molecular contortion. As the molecular contortion increases, the Q band of the absorption spectrum becomes more red‐shifted and the electrochemcial HOMO–LUMO gap becomes smaller, reaching at 1294 nm and 0.77 eV in 9 , respectively. The effect of molecular contortion on the electronic properties was studied by means of DFT calculations.  相似文献   

10.
Ruthenocene‐type hybrid complexes with N‐fused porphyrinato ligands, [Ru(NFp)Cp] (NFp=N‐fused porphyrin, Cp=cyclopentadienyl), have been prepared and characterized by NMR and UV/Vis/NIR spectroscopy, cyclovoltammetry, and X‐ray crystallography. [Ru(NFp)Cp] is a common low‐spin ruthenium(II) complex and shows strong aromaticity. The Ru–Cp distance (1.833 Å) in [Ru(NFp)Cp] is comparable to that in [RuCp2] (1.840 Å). DFT calculations on [Ru(NFp)Cp] showed the unequivocal contribution of the RuCp moiety as well as the NFp moiety to both the HOMO and LUMO, constructing a three‐dimensional d–π conjugated system. The HOMO–LUMO gaps of [Ru(NFp)Cp] are insensitive to the substituents on the NFp ligand, which is illustrated spectroscopically as well as theoretically. This is in sharp contrast to the ligand precursor, the N‐fused porphyrin, in which the HOMO–LUMO gap is affected by substituents in a similar manner to standard porphyrins and related macrocycles.  相似文献   

11.
meso‐Monobenzoporphycene (mMBPc) and meso‐dibenzoporphycene (mDBPc), in which one or two benzene moieties are fused at ethylene‐bridged positions (meso‐positions) of porphycene, were prepared in an effort to further delocalize the π‐electrons within the porphycene molecule. mMBPc and mDBPc were fully characterized by mass spectrometry, 1H and 13C NMR spectroscopy, and X‐ray crystallography. The longest‐wavelength Q‐bands of mMBPc and mDBPc are red‐shifted by 92 nm and 418 nm, respectively, compared to that of the unsubstituted porphycene (Pc). Electrochemical measurements indicate that the HOMO is destabilized and the LUMO is stabilized by the fused benzene moieties at the meso positions. Furthermore, both XPS and theoretical studies support the presence of a cis tautomeric form in the ground state of mDBPc, despite the fact that essentially all known porphycene derivatives adopt the trans tautomeric form.  相似文献   

12.
A meso–meso β‐β β‐β triply linked subporphyrin dimer 6 was synthesized by stepwise reductive elimination of β‐to‐β doubly PtII‐bridged subporphyrin dimer 9 . Dimer 6 was characterized by spectroscopic and electrochemical measurements, theoretical calculations, and picosecond time‐resolved transient absorption spectroscopy. X‐ray diffraction analysis reveals that 6 has a bowl‐shaped structure with a positive Gaussian curvature. Despite the curved structure, 6 exhibits a remarkably red‐shifted absorption band at 942 nm and a small electrochemical HOMO–LUMO gap (1.35 eV), indicating an effectively conjugated π‐electronic network.  相似文献   

13.
Incorporating tungsten into the N3 core of a N‐fused porphyrin (NFP; 1 ) affords high‐valent tungsten(VI)‐NFP complexes, WClO2‐1 and 21‐chlorinated WClO2‐3 . The X‐ray structure of WClO2‐1 reveals a distorted octahedral geometry with sitting atop metal coordination. The absorption spectrum of WClO2‐1 displays bathochromically shifted Q‐like bands beyond 1000 nm, indicating an inherently narrow HOMO‐LUMO energy gap. DFT calculations show that the degeneracy of the LUMO and LUMO+1 pair of 1 is significantly resolved by the tungsten(VI) coordination. Conclusively, magnetic circular dichroism (MCD) spectroscopy and cyclic voltammetry provide a rationale for the narrow HOMO‐LUMO energy gap in the “16‐electron” d0 tungsten(VI)‐NFP complexes.  相似文献   

14.
A series of N‐methyl‐3,4‐fulleropyrrolidine (NMFP) derivatives were designed by selecting different π‐conjugated linkers and electron‐donating groups as D‐π‐A and D‐A systems. The optimised structures and photo‐physical properties of NMFP and its derivatives have been determined using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods with the B3LYP functional and the 6‐31G basis set. According to the computation analysis, both the π‐conjugated linkers and the electron‐donating groups can influence the electronic and photo‐physical properties of the NMFP derivatives. Our calculated results demonstrated that the electron‐donating groups, with significant electron‐donating ability, had the tendency to increase the highest occupied molecular orbital (HOMO) energy. The π‐conjugated linkers with lower resonance energy decreased the lowest occupied molecular orbital (LUMO) energy and caused a significant decrease in the energy gap (Eg) between the EHOMO and ELUMO. A Natural Bond Orbital (NBO) analysis examines the effect of the electron‐donating group, π conjugated linker, and electron‐withdrawing group for these NMFP derivatives. For the NMFP derivatives, a projected density of state (PDOS) analysis demonstrated that the electron density of HOMO and LUMO are concentrated on the electron‐donating group and the π‐conjugated linker, respectively. A TD‐DFT/B3LYP calculation was performed to calculate the electronic absorption spectra of these NMFP derivatives. Both the electron‐donating group and the π‐conjugated linker contribute to the major absorption peaks, which are assigned as HOMO to LUMO transitions and are red‐shifted relative to those of non‐substituted NMFP.  相似文献   

15.
Two unprecedented porphyrin fused nanographene molecules, 1 and 2 , have been synthesized by the Scholl reaction from tailor‐made precursors based on benzo[m]tetraphene‐substituted porphyrins. The chemical structures were validated by a combination of high‐resolution matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HR MALDI‐TOF MS), IR and Raman spectroscopy, and scanning tunnelling microscopy (STM). The UV‐vis‐near infrared absorption spectroscopy of 1 and 2 demonstrated broad and largely red‐shifted absorption spectra extending up to 1000 and 1400 nm, respectively, marking the significant extension of the π‐conjugated systems.  相似文献   

16.
Mono‐ and bis(diphenylborane)‐fused porphyrins were synthesized from the corresponding β‐(2‐trimethylsilylphenyl)‐substituted porphyrins through the sequence of Si–B exchange reaction, intramolecular bora‐Friedel–Crafts reaction, and ring‐closing Si–B exchange reaction. Effective electronic interactions of the empty p‐orbital of the boron atom with the porphyrin π‐circuit lead to red‐shifted absorption spectra and substantially decreased LUMO energy levels. Pyridine adds at the boron center to cause disruption of the electronic interaction of the boron atom with large association constants (1.9–17×104 m ?1) depending on the central metal at the porphyrin. The ZnII complex behaved as a hetero‐dinuclear Lewis acid, exhibiting regioselective binding of pyridines at the boron or the zinc center.  相似文献   

17.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
In this work, we report the synthesis, spectroscopic characterization, and theoretical analysis of a linearly conjugated pentacene‐fused porphyrin dimer and cross‐conjugated quinone‐fused dinaphtho[2,3]porphyrins. These multichromophoric systems display non‐typical UV‐visible absorptions of either porphyrins or pentacenes/quinones. UV‐visible, emission and magnetic circular dichroism (MCD) spectroscopy suggest strong electronic interactions among the multichromophores in the system. DFT calculations revealed the delocalization of the HOMOs and LUMOs spanning the entire dimer and linker assembly. The pentacene‐fused porphyrin dimer is significantly more stable than both the corresponding pentacene and the heptacene derivatives. The availability of these huge π‐extended and electronically highly interactive multichromophoric systems promises unprecedented electronic and photophysical properties.  相似文献   

19.
Direct β‐to‐β linked branched and cyclic porphyrin trimers and pentamers have been synthesized by the Suzuki–Miyaura coupling of β‐borylporphyrins and β‐bromoporphyrins. The cyclic porphyrin trimer, the smallest directly linked cyclic porphyrin wheel to date, and its twined pentamer, exhibit small electrochemical HOMO–LUMO gaps, broad nonsplit Soret bands, and red‐shifted Q‐bands, thus indicating large electronic interactions between the constituent porphyrin units.  相似文献   

20.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号