首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A range of organic molecules with acidic or basic groups exhibit strong pH-dependent binding inside the cavity of a polyhedral coordination cage. Guest binding in aqueous solution is dominated by a hydrophobic contribution which is compensated by stronger solvation when the guests become cationic (by protonation) or anionic (by deprotonation). The Parkinson''s drug 1-amino-adamantane (‘amantadine’) binds with an association constant of 104 M–1 in the neutral form (pH greater than 11), but the stability of the complex is reduced by three orders of magnitude when the guest is protonated at lower pH. Monitoring the uptake of the guests into the cage cavity was facilitated by the large upfield shift for the 1H NMR signals of bound guests due to the paramagnetism of the host. Although the association constants are generally lower, guests of biological significance such as aspirin and nicotine show similar behaviour, with a substantial difference between neutral (strongly binding) and charged (weakly binding) forms, irrespective of the sign of the charged species. pH-dependent binding was observed for a range of guests with different functional groups (primary and tertiary amines, pyridine, imidazole and carboxylic acids), so that the pH-swing can be tuned anywhere in the range of 3.5–11. The structure of the adamantane-1-carboxylic acid complex was determined by X-ray crystallography: the oxygen atoms of the guest form CH···O hydrogen bonds with one of two equivalent pockets on the internal surface of the host. Reversible uptake and release of guests as a function of pH offers interesting possibilities in any application where controlled release of a molecule following an external stimulus is required.  相似文献   

2.
FeII4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways.

FeII4L6 cage 1 binds anionic guests but not neutral guests. In its reduced form, the cage can bind neutral C60. Reduction and oxidation of the cage could thus be used as a stimulus to control the uptake and release of both neutral and charged guests.  相似文献   

3.
Herein we report a D3h‐symmetric tail‐to‐tail bis‐calix[6]arene 3 featuring two divergent cavities triply connected by ureido linkages. This calix[6]tube was synthesized by a domino Staudinger/aza‐Wittig reaction followed by a macrocyclization reaction. This process also afforded a C2h‐symmetric isomer that represents a rare example of a self‐threaded rotaxane based on calix[6]arene subunits. The binding properties of 3 have been evaluated by NMR studies. Thus, bis‐calix[6]arene 3 is able to bind simultaneously two neutral ureido guests through an induced‐fit process. The guests are located in the cavities and are recognized through multiple hydrogen‐bonding interactions with the ureido bridges. Host 3 can also simultaneously bind multiple ions and is especially efficient for the complexation of organic ion triplets. The anion is recognized through hydrogen‐bonding interactions at the ureido binding site and is thus located between the two ammonium ions accommodated in the cavities. The resulting [1+1+2] quaternary complexes represent rare examples of cascade complexes with organic cations. These complexes are unique: 1) They are stable even in a markedly protic solvent, 2) the recognition of the ion triplets proceeds in a cooperative way through an induced‐fit process and with a high selectivity, linear cations and doubly charged anions being particularly well recognized, 3) the ions are bound as contact ion triplets thanks to the closeness of the three binding sites, 4) the cationic guests can be exchanged and thus mixed [1+1+1+1] complexes can be obtained, 5) the ureido linkers wrapped around the anion adopt a helical shape and the resulting chirality is sensed by the cations. In other words, bis‐calix[6]arene 3 presents a selective inner tunnel in which multiple guests such as organic ion triplets can be aligned in a cooperative way through induced‐fit processes.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(23):3767-3771
The synthesis of the first enantiopure calix[6]aza-cryptand was achieved in five steps from the known 1,3,5-tris-O-methylated calix[6]arene. A 1H NMR spectroscopic study has shown that the chiral tren cap constrains the calixarene core in a straight cone conformation ideal for host–guest chemistry applications. As a result, the tetra-protonated derivative displays remarkable host properties towards polar neutral molecules and enantioselective recognition processes have been evidenced with chiral guests.  相似文献   

5.
Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple hydrogen bonds to the hosts. The binding constants for all 12 host-guest complexes have been determined by using fluorescence titrations by monitoring the increase in fluorescence of the host upon protonation by the addition of the guest. The binding constants could be tuned by changing the design of the acidic part of the guest. The formation of hydrogen bonds gives, in all cases, higher association constants, demonstrating that the host is more than a proton sensor. The host with the longer spacer (propyl) shows higher association constants than the host with the shorter spacer (ethyl). The gain in association constants are higher when the urea function is added to the guests for the host with the longer spacer, indicating a better fit. Collision-induced dissociation mass spectrometry (CID-MS) is used to study the stability of the six motifs using the corresponding third generation dendrimer. A similar trend is found when the six different guests are compared.  相似文献   

6.
A new type of guest has been designed and synthesized for the exo‐type supramolecular functionalization of adamantyl‐urea‐terminated poly(propylene imine) dendrimers. This new type of guest motif features a uriedo methane sulfonic acid moiety that binds very selectively to the surfaces of dendrimers via a combination of noncovalent interactions forming well‐defined complexes. The guest–host properties have been examined for a fifth‐generation adamantyl‐urea‐functionalized poly(propylene imine) dendrimer capable of binding 32 guest molecules and for a model host molecule that can bind only one guest molecule. The guest–host chemistry has been studied with 1H NMR spectroscopy, nuclear Overhauser enhancement spectroscopy NMR spectroscopy, T1‐relaxation NMR experiments, and IR spectroscopy. The 1:32 ratio with the dendrimer has been confirmed unambiguously from 1H NMR spectra of the complex after size exclusion chromatography. Competition experiments with guests bearing a carboxylic acid instead of a sulfonic acid in the binding motif have demonstrated that the sulfonic acid has superior binding strength. Also, the importance of a combination of noncovalent interactions has been shown via competition experiments with a guest lacking the uriedo moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3792–3799, 2004  相似文献   

7.
Guest encapsulation underpins the functional properties of self‐assembled capsules yet identifying systems capable of strongly binding small organic molecules in solution remains a challenge. Most coordination capsules rely on the hydrophobic effect to ensure effective solution‐phase association. In contrast, we show that using non‐interacting anions in apolar solvents can maximize favorable interactions between a cationic Pd2L4 host and charge‐neutral guests resulting in a dramatic increase in binding strength. With quinone‐type guests, association constants in excess of 108 m ?1 were observed, comparable to the highest previously recorded constant for a metallosupramolecular capsule. Modulation of optoelectronic properties of the guests was also observed, with encapsulation either changing or switching‐on luminescence not present in the bulk phase.  相似文献   

8.
pi-Conjugated oligo(p-phenylene vinylene) (OPV) guest molecules for interaction with dendritic hosts were synthesized and fully characterized by NMR spectroscopy, MALDI-TOF-MS, elemental analysis and optical measurements. The binding properties of the five different OPV guests to a N,N-bis[(3-adamantyl ureido) propyl] methylamine host have been investigated. The guests that contained an aryl urea glycine spacer were bound with the highest association constant. Subsequently, an adamantyl urea modified fifth generation poly(propylene imine) dendrimer was synthesized as a multivalent host which contains 32 N,N-bis[(3-adamantyl ureido) propyl] amine binding sites. Size exclusion chromatography showed that 32 of the OPV guests strongly bind to the fifth generation adamantyl functionalized dendritic host. In the case of the supramolecular dendritic host/guest system smooth homogeneous thin films could be obtained by spin coating. The dendritic guest-host complexes showed a significantly higher emission upon binding then that of the individual molecules due to the three-dimensional orientation of the OPV guest molecules. In the solid state, this enhancement in luminescence was a factor of 10. The pi-conjugated oligomers are less aggregated in the supramolecular assemblies presumably because of a shielding effect of the bulky adamantyl units present in the hosts.  相似文献   

9.
Pseudo‐octahedral MII6L4 capsules result from the subcomponent self‐assembly of 2‐formylphenanthroline, threefold‐symmetric triamines, and octahedral metal ions. Whereas neutral tetrahedral guests and most of the anions investigated were observed to bind within the central cavity, tetraphenylborate anions bound on the outside, with one phenyl ring pointing into the cavity. This binding configuration is promoted by the complementary arrangement of the phenyl rings of the intercalated guest between the phenanthroline units of the host. The peripherally bound, rapidly exchanging tetraphenylborate anions were found to template an otherwise inaccessible capsular structure in a manner usually associated with slow‐exchanging, centrally bound agents. Once formed, this cage was able to bind guests in its central cavity.  相似文献   

10.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

11.
This article reports that an M2L4 molecular capsule is capable of encapsulating various neutral molecules in quantitative yields. The capsule was obtained as a single product by mixing a small number of components; two PdII ions and four bent bispyridine ligands containing two anthracene panels. Detailed studies of the host capability of the PdII‐linked capsule revealed that spherical (e.g., paracyclophane, adamantanes, and fullerene C60), planar (e.g., pyrenes and triphenylene), and bowl‐shaped molecules (e.g., corannulene) were encapsulated in the large spherical cavity, giving rise to 1:1 and 1:2 host–guest complexes, respectively. The volume of the encapsulated guest molecules ranged from 190 to 490 Å3. Within the capsule, the planar guests adopt a stacked‐dimer structure and the bowl‐shaped guests formed an unprecedented concave‐to‐concave capsular structure, which are fully shielded by the anthracene shell. Competitive binding experiments of the capsule with a set of the planar guests established a preferential binding series for pyrenes≈phenanthrene>triphenylene. Furthermore, the capsule showed the selective formation of an unusual ternary complex in the case of triphenylene and corannulene.  相似文献   

12.
The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs.  相似文献   

13.
This Review covers design strategies, synthetic challenges, host–guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal–organic frameworks, but the main focus is on discrete coordination architectures, that is, metal‐mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana‐shaped bis‐pyridyl ligands together with square‐planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double‐cages obeying the formula [M4L8]. The peculiar topology of these double‐cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template‐controlled selectivity. In stimuli‐responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self‐assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.  相似文献   

14.
We demonstrate the use of a simple pH swing to control the selection of one of three different guests from aqueous solution by a coordination cage host. Switching between different guests is based on the fact that neutral organic guests bind strongly in the cage due to the hydrophobic effect, but for acidic or basic guests, the charged (protonated or deprotonated) forms are hydrophilic and do not bind. The guests used are adamantane-1,3-dicarboxylic acid (H2A) which binds at low pH when it is neutral but not when it is deprotonated; 1-amino-adamantane (B) which binds at high pH when it is neutral but not when it is protonated; and cyclononanone (C) whose binding is not pH dependent and is therefore the default guest at neutral pH. Thus an increase in pH can reversibly switch the host between the three different bound states cage·H2A (at low pH), cage·C (at medium pH), and cage·B (at high pH) in succession.  相似文献   

15.
Molecular clip 1 remains monomeric in water and engages in host–guest recognition processes with suitable guests. We report the Ka values for 32 1? guest complexes measured by 1H NMR, UV/Vis, and fluorescence titrations. The cavity of 1 is shaped by aromatic surfaces of negative electrostatic potential and therefore displays high affinity and selectivity for planar and cationic aromatic guests that distinguishes it from CB[n] receptors that prefer aliphatic over aromatic guests. Electrostatic effects play a dominant role in the recognition process whereby ion–dipole interactions may occur between ammonium ions and the C=O groups of 1 , between the SO3? groups of 1 and pendant cationic groups on the guest, and within the cavity of 1 by cation–π interactions. Host 1 displays a high affinity toward dicationic guests with large planar aromatic surfaces (e.g. naphthalene diimide NDI+ and perylene diimide PDI+) and cationic dyes derived from acridine (e.g. methylene blue and azure A). The critical importance of cation–π interactions was ascertained by a comparison of analogous neutral and cationic guests (e.g. methylene violet vs. methylene blue; quinoline vs. N‐methylquinolinium; acridine vs. N‐methylacridinium; neutral red vs. neutral red H+) the affinities of which differ by up to 380‐fold. We demonstrate that the high affinity of 1 toward methylene blue (Ka=3.92×107 m ?1; Kd=25 nm ) allows for the selective sequestration and destaining of U87 cells stained with methylene blue.  相似文献   

16.
The straightforward synthesis of a new hexahomotrioxacalix[3]arene-based ligand capped by a tren subunit was developed and the binding properties of the corresponding zinc complex were explored by NMR spectroscopy. Similarly to the closely related calix[6]tren-based systems, the homooxacalixarene core ensures the mononuclearity of the zinc complex and the metal center displays a labile coordination site for exogenous guests. However, very different host–guest properties were observed: i) in CDCl3, the zinc complex strongly binds a water molecule and is reluctant to recognize other neutral guests, ii) in CD3CN, the exo-coordination of anions prevails. Thus, in strong contrast to the calix[6]tren-based systems, the coordination of neutral guests that thread through the small rim and fill the polyaromatic cavity was not observed. This unique behaviour is likely due to the fact that the 18-membered ethereal macrocycle is too small to let a molecule threading through it. This work illustrates the key role played by the second coordination sphere in the binding properties of metal complexes.  相似文献   

17.
A neutral tripodal tris(ferrocenylurea) anion receptor has been designed that can electrochemically and optically recognize sulfate and phosphate anions. The binding of the tetrahedral anion induced distinct cathodic shifts of the ferrocene/ferrocenium redox couple in chloroform, whereas the UV/Vis spectrum of the receptor showed an increase in the d–d transition band upon addition of sulfate ions. Furthermore, the anion complexes (TBA)2 ? [SO4?L] ? H2O ( 1 ) and TBA[F?L] ( 2 ; TBA=tetrabutylammonium ion) were isolated. Crystal structural analyses showed that the receptor in the two 1:1 (host/guest) complexes encapsulated sulfate or fluoride ions in the tripodal cavity through multiple hydrogen bonds. 1H NMR spectroscopic and ESI mass‐spectrometric analysis revealed strong sulfate and fluoride binding in solution.  相似文献   

18.
Paraquat bis(hexafluorophosphate) undergoes stepwise dissociation in acetone. All three species—the neutral molecule, and the mono‐ and dications—are represented significantly under the experimental conditions typically used in host–guest binding studies. Paraquat forms at least four host–guest complexes with dibenzo[24]crown‐8. They are characterized by both 1:1 and 1:2 stoichiometries, and an overall charge of either zero (neutral molecule) or one (monocation). The monocationic 1:1 host–guest complex is the most abundant species under typical (0.5–20 mM ) experimental conditions. The presence of the dicationic 1:1 host–guest complex cannot be excluded on the basis of our experimental data, but neither is it unambiguously confirmed to be present. The two confirmed forms of paraquat that do undergo complexation—the neutral molecule and the monocation—exhibit approximately identical binding affinities toward dibenzo[24]crown‐8. Thus, the relative abundance of neutral, singly, and doubly charged pseudorotaxanes is identical to the relative abundance of neutral, singly, and doubly charged paraquat unbound with respect to the crown ether in acetone. In the specific case of paraquat/dibenzo[24]crown‐8, ion‐pairing does not contribute to host–guest complex formation, as has been suggested previously in the literature.  相似文献   

19.
Cyclotricatechylene (ctcH6) is a bowl‐shaped macrocyclic compound that can be used as a building block for self‐assembled capsules. ctcH6 and its derivatives in various protonation states – here collectively labeled as CTC – form dimers that resemble the shape of a clam. These clam‐shaped entities have been studied experimentally by Abrahams, Robson, and co‐workers [B. F. Abrahams, N. J. FitzGerald, T. A. Hudson, R. Robson and T. Waters, Angew. Chem. Int. Ed. 2009 , 48, 3129–3132] where the capsules acted as an excellent host for large alkali‐metal cations. In this study, we present a detailed analysis based on accurate dispersion‐corrected Density Functional Theory approaches that reveals the factors that stabilise such CTC‐based capsules at different protonation states and their interaction with various encapsulated guests. Our results show that the capsules’ overall stability results as an interplay of hydrogen bonding, London dispersion, and electrostatic effects. The most stable capsules with group‐1 and group‐2 cations as guests contain only six phenolic hydrogens, as opposed to the maximum possible number of twelve. Inclusion of larger alkali‐metal cations is favoured due to larger London‐dispersion contributions. Cations are favoured as guests over isoelectronic neutral species, as the resulting host‐guest complexes experience additional stability due to cooperative effects. In fact, using the latter to drive the formation of specific capsules could be used in future strategies aimed at synthesising similar aggregates; our results provide an insightful understanding and useful guidance for such future endeavours.  相似文献   

20.
Charged or neutral adamantane guests can be encapsulated into the cavity of cationic metal–organic M6L4 (bpy-cage, M=PdII(2,2′-bipyridine), L=2,4,6-tri(4-pyridyl)-1,3,5-triazine) cages through hydrophobic interaction. These encapsulations can provide an approach to control the net charge on the resulting cage–guest complexes and regulate their charge-dominated assembly into hollow spherical blackberry-type assemblies in dilute solutions: encapsulation of neutral guests will hardly influence their self-assembly process, including the blackberry structure size, which is directly related to the intercage distance in the assembly; whereas encapsulating negatively (positively) charged guests resulted in a shorter (longer) intercage distance with larger (smaller) assemblies formed. Therefore, the host–guest chemistry approach can be used to tune the intercage distance accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号