首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm?1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol?1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule.  相似文献   

2.
Chiral columns formed by a helical cis‐polyphenylacetylene (PPA) derivative P1 are reversibly switched during a phase transition between two chiral columnar phases: the frustrated Φh3D‐SL phase containing four chains at low temperature and a hexagonal columnar phase Φh at high temperature, accompanied by a simultaneous conformational change. The helix–helix transition along the PPA backbone during the Φh3D‐SL‐Φh transition makes the uniaxially oriented P1 capable of reversibly and reproducibly elongating (132 %) upon heating and contracting upon cooling, exhibiting the behavior of a two‐way shape actuator.  相似文献   

3.
Coaxial-electrospinning (ES) was used as a new method to fabricate one-dimensional (1D) confinements for studying confined crystallization of poly(ethylene glycol) (PEG). A series of core–sheath ultrafine fibers with PEG as the core and cellulose acetate as the sheath were obtained by coaxial ES. It was found that the uniform core–sheath ultrafine fibers could be fabricated and a (1D) confinement environment, a nanotube with a diameter from 68 to 860 nm, could be obtained by coaxial-ES. When the confinement dimension decreased to be smaller than 120 nm in diameter, the melt temperature (Tm), the crystallization temperature (Tc), the crystallinity (Xm), and the crystal sizes of the PEG were much smaller than those of bulk PEG and when the nanotube was larger than 200 nm in diameter, the Tm, Tc, Xm, and the crystallite sizes of the PEG were close to those of bulk PEG, which suggested that the crystallization of the PEG was influenced by the confinement dimension. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

4.
It is challenging to prepare co‐organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO2) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co‐assembled in aqueous solution. CO2‐triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self‐assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO2 bubble‐induced vortex during the co‐assembly process.  相似文献   

5.
A diblock copolymer system constituting both achiral and chiral blocks, polystyrene‐block‐poly(L ‐lactide) (PS‐PLLA), was designed for the examination of chiral effects on the self‐assembly of block copolymers (BCPs). A unique phase with three‐dimensional hexagonally packed PLLA helices in PS matrix, a helical phase (H*), can be obtained from the self‐assembly of PS‐rich PS‐PLLA with volume fraction of PLLA f = 0.34, whereas no such phase was found in racemic polystyrene‐block‐poly(D .L ‐lactide) (PS‐PLA) BCPs. Moreover, various interesting crystalline PS‐PLLA nanostructures can be obtained by controlling the crystallization temperature of PLLA (Tc,PLLA), leading to the formation of crystalline helices (PLLA crystallization directed by helical confined microdomain) and crystalline cylinders (phase transformation of helical nanostructure dictated by crystallization) when Tc,PLLA < Tg,PS (the glass transition temperature of PS) and Tc,PLLATg,PS, respectively. As a result, a spring‐like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation (i.e., stretching) of helices and to result in crystalline cylinders. For PS‐PLLA with PLLA‐rich fraction (f = 0.65), another unique phase, a hexagonally packed core‐shell cylinder phase with helical sense (CS*), in which the PS microdomains appear as shells and PLLA microdomains appear as matrix and cores, can be found in the self‐assembly of PLLA‐rich PS‐PLLA BCPs. The formation of those novel phases: helix and core‐shell cylinder is attributed to the chiral effect on the self‐assembly of BCPs, so we named this PS‐PLLA BCP as chiral BCP (BCP*). For potential applications of those materials, the spring‐like behavior with thermal reversibility might provide a method for the design of switchable nanodevices, such as nanoscale actuators. In addition, the PLLA blocks can be hydrolyzed. After hydrolysis, helical nanoporous PS bulk and PS tubular texture can be obtained and used as templates for the formation of nanocomposites.

  相似文献   


6.
Two chiral (A)6B‐typed supramolecular cages were constructed from hydrogen‐bonded C6‐symmetric zinc porphyrin hexamers and chiral C3‐symmetric pyridyl hexadentates with a core of 1,3,5‐triphenylbenzene. Circular dichroism and molecular simulations revealed that the symmetry of the supramolecular cages switched from pseudo‐C3v to C3 with the rotational confinement of the biphenyl backbones at low temperatures, which generated conformationally chiral transfer and amplification. This unique phenomenon suggests a new strategy to develop smart materials with high sensitivity and excellent reversibility.  相似文献   

7.
Organic ferroelectrics have been actively developed with the goal of fabricating environmentally friendly and low-cost memory devices. The remanent polarization of hydrogen-bonded organic ferroelectrics approaches that of the inorganic ones. Nanoscale fabrication of organic ferroelectrics is an essential aspect of high-density memory devices. A pyrene derivative with four tetradecylamide (−CONHC14H29) chains ( 1 ) formed an amide-type N−H⋅⋅⋅O hydrogen-bonded one-dimensional (1D) column, which demonstrated ferroelectricity in the discotic hexagonal columnar (Colh) liquid crystalline phase through the inversion of the orientation of the hydrogen-bonded chains. On the contrary, similar chiral pyrene derivatives bearing 3,7-dimethyl-1-octhylamide chains (S- 2 and R- 2 ) did not indicate the Colh phase and ferroelectricity. Homogeneous mixed liquid crystals ( 1 )1−x(S- 2 )x (i.e., between the ferroelectric 1 and the non-ferroelectric S- 2 ) enable the control of the nanoscale aggregation state of the organic ferroelectrics, resulting in a nanoscale effect of the 1D supramolecular ferroelectrics. Ferroelectric mixed liquid crystals ( 1 )1−x(S- 2 )x were observed at x≦0.03, where one S- 2 molecule was inserted after every thirty-three 1 molecule in the mixed liquid crystal ( 1 )33(S- 2 ). An average ( 1 )34 length of approximately 12 nm was required to maintain the 1D ferroelectricity, which was similar to the nanoscale limit of inorganic ferroelectrics, such as hafnium oxide thin film (≈15 nm).  相似文献   

8.
The syntheses and structures of two new ZnII complexes, a 2D graphite‐like layer {[Zn(PIA)H2O] ? H2O}n ( 1 ) and an independent 1D single‐walled metal–organic nanotube (SWMONT) {[Zn2(PIA)2(bpy)2] ? 2.5 H2O ? DMA}n ( 2 ), have been reported based on a “Y”‐shaped 5‐(pyridine‐4‐yl)isophthalic acid ligand (H2PIA). Interestingly, the 2D graphite‐like layer in 1 can transform into the independent 1D SWMONT in 2 with addition of 2,2′‐bipyridine (bpy), which represents the first successfully experimental example of an independent 1D metal–organic nanotube generated from a 2D layer by a “rolling‐up” mechanism.  相似文献   

9.
Four new 1D spin‐Peierls‐type compounds, [D5]1‐(4′‐R‐benzyl)pyridinium bis(maleonitriledithiolato)nickelate ([D5]R‐Py; R=F, I, CH3, and NO2), were synthesized and characterized structurally and magnetically. These 1D compounds are isostructural with the corresponding non‐deuterated compounds, 1‐(4′‐R‐benzyl)pyridinium bis(maleonitriledithiolato)nickelate (R‐Py; R=F, I, CH3, and NO2). Compounds [D5]R‐Py and R‐Py (R=F, I, CH3, and NO2) crystallize in the monoclinic space group P21/c with uniform stacks of anions and cations in the high‐temperature phase and triclinic space group P$\bar 1$ with dimerized stacks of anions and cations in the low‐temperature phase. Similar to the non‐deuterated R‐Py compounds, a spin‐Peierls‐type transition occurs at a critical temperature for each [D5]R‐Py compound; the magnetic character of the 1D S=1/2 ferromagnetic chain for [D5]F‐Py and the 1D S=1/2 Heisenberg antiferromagnetic chain for others appear above the transition temperature. Spin‐gap magnetic behavior was observed for all of these compounds below the transition temperature. In comparison to the corresponding R‐Py compound, the cell volume is almost unchanged for [D5]F‐Py and shows slight expansion for [D5]R‐Py (R=I, CH3, and NO2) as well as an increase in the spin‐Peierls‐type transition temperature for all of these 1D compounds in the order of F>I≈CH3≈NO2. The large isotopic effect of nonmagnetic countercations on the spin‐Peierls‐type transition critical temperature, TC, can be attributed to the change in ω0 with isotope substitution.  相似文献   

10.
The two single‐enantiomer phosphoric triamides N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(S)‐(−)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(S)‐(−)‐(C6H5)CH(CH3)NH]2P(O), denoted L‐1 , and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(R)‐(+)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(R)‐(+)‐(C6H5)CH(CH3)NH]2P(O), denoted D‐1 , both C23H24F2N3O2P, have been investigated. In their structures, chiral one‐dimensional hydrogen‐bonded architectures are formed along [100], mediated by relatively strong N—H…O(P) and N—H…O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph‐set motifs R22(10), R21(6) and C22(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L‐1 at 120 K and of D‐1 at 95 K, the unit‐cell dimensions and volume show a slight difference; the contraction in the volume of D‐1 with respect to that in L‐1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry‐independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L‐1 and D‐1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.  相似文献   

11.
A liquid crystal ( HZL 7/* ) containing an (S)‐2‐methylbutyl‐(S)‐lactate unit in the chiral chain, is investigated by means of 2H and 13C NMR spectroscopy in order to obtain information on its orientational order, its molecular structure and the effect of external magnetic fields on the supramolecular structure of its phases. This mesogen presents very peculiar mesomorphic properties and exhibits frustrated TGBA* and TGBC* phases in a wide temperature range up to 60 °C, as well as an additional phase transition from TGBC1* to TGBC2*. 2H NMR measurements show, for the first time, a peculiar magnetic field effect in unwinding the supramolecular structure of both the TGBA* and TGBC* phases. This effect is particularly evident at higher magnetic fields, while different behaviour is observed at lower magnetic fields. This indicates that the supramolecular structure is very sensitive to magnetic fields of the order of 1 Tesla. Moreover, the analysis of the 2H and 13C NMR spectra of HZL 7/* allow us to obtain several structural properties, such as the tilt angle of the TGBC* phases and the local orientational order parameters referred to the phenyl and biphenyl fragments. This is the first structural characterization of the frustrated phases of these complexes by means of NMR.  相似文献   

12.
Confinement of polymers to nanoscale dimensions can dramatically impact their physical properties. Substantial efforts have focused on the glass transition temperature (Tg) of polymers confined to thin films, but their mechanical properties are less studied despite their technological importance. In this review, challenges with mechanical measurements of polymer thin films are discussed along with novel metrologies that provide insight into their mechanical properties. A comparison of experimental measurements, simulations and theory provide several general conclusions about the mechanical properties under confinement. Confinement impacts the elastic modulus, rubbery compliance and viscosity of polystyrene, the archetypal polymer for confinement, but the confinement effect appears to depend on the measurement technique. This effect may be due to the details of averaging of gradients in properties that are dependent on the measurement details. Routes to minimize confinement effects are addressed. Despite progress in the measurements of mechanical properties of polymer thin films, there remain unresolved questions about the impact of confinement, which we highlight at the end of this review. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 9–30  相似文献   

13.
The complexation of chiral guests in the cavity of dimeric self‐assembled chiral capsule 1 2 was studied by using NMR spectroscopy and X‐ray crystallography. Capsule 1 2 has walls composed of amino acid backbones forming numerous directional binding sites that are arranged in a chiral manner. The polar character of the interior dictates the encapsulation preferences towards hydrophilic guests and the ability of the capsule to extract guests from water into an organic phase. Chiral discrimination towards hydroxy acids was evaluated by using association constants and competition experiments, and moderate de values were observed (up to 59 %). Complexes with one or two guest molecules in the cavity were formed. For 1:1 complexes, solvent molecules are coencapsulated; this influences guest dynamics and makes the chiral recognition solvent dependent. Reversal of the preferences can be induced by coencapsulation of a nonchiral solvent in the chiral internal environment. For complexes with two guests, filling of the capsule’s internal space can be very effective and packing coefficients of up to 70 % can be reached. The X‐ray crystal structure of complex 1 2?((S) ‐6 )2 with well‐resolved guest molecules reveals a recognition motif that is based on an extensive system of hydrogen bonds. The optimal arrangement of interactions with the alternating positively and negatively charged groups of the capsule’s walls is fulfilled by the guest carboxylic groups acting simultaneously as hydrogen‐bond donors and acceptors. An additional guest molecule interacting externally with the capsule reveals a possible entrance mechanism involving a polar gate. In solution, the structural features and dynamic behavior of the D4‐symmetric homochiral capsule were analyzed by variable‐temperature NMR spectroscopy and the results were compared with those for the S8‐symmetric heterochiral capsule.  相似文献   

14.
We present a mean field theory to describe a helicoidal cholesteric phase for mixtures of a chiral nematic liquid crystal (LC) and a polymer chain as well as for pure chiral nematic LC molecules in the presence of a longitudinal external field parallel to the pitch axis of a cholesteric (Ch) phase. The free energy of the helicoidal Ch phase (ChH) is derived as a function of a usual orientational order parameter and an order parameter of the ChH phase. On increasing the strength of the external field, we find that the Ch phase changes to the nematic (N) phase through the ChH phase. Depending on the temperature and the strength of the external field, we find the second-order NChH and ChH–Ch phase transitions and the first-order paranematic (pN)N, pNChH and pN–Ch phase transitions. We also predict phase diagrams in mixtures of a flexible polymer and a Ch LC molecule under the external field.  相似文献   

15.
The molecular relaxation processes and structure of isotactic polystyrene (iPS) films were investigated with real‐time dielectric spectroscopy and simultaneous wide‐ and small‐angle X‐ray scattering. The purpose of this work was to explore the restrictions imposed on molecular mobility in the vicinity of the α relaxation (glass transition) for crystallized iPS. Isothermal cold crystallization at temperatures of Tc = 140 or 170 °C resulted in a sigmoidal increase of crystallinity with crystallization time. The glass‐transition temperature (Tg), determined calorimetrically, exhibited almost no increase during the first stage of crystal growth before impingement of spherulites. After impingement, the calorimetric Tg increased, suggesting that confinement effects occur in the latter stages of crystallization. For well‐crystallized samples, the radius of the cooperativity region decreased substantially as compared with the purely amorphous sample but was always smaller than the layer thickness of the mobile amorphous fraction. Dielectric experiments directly probed changes in the amorphous dipole mobility. The real‐time dielectric data were fitted to a Havriliak–Negami model, and the time dependence of the parameters describing the distribution of relaxation times and dielectric strength was obtained. The central dipolar relaxation time showed little variation before spherulite impingement but increased sharply during the second stage of crystal growth as confinement occurred. Vogel–Fulcher–Tammann analysis demonstrated that the dielectric reference temperature, corresponding to the onset of calorimetric Tg, did not vary for well‐crystallized samples. This observation agreed with a model in which constraints affect primarily the modes having longer relaxation times and thus broaden the glass‐transition relaxation process on the higher temperature side. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 777–789, 2004  相似文献   

16.
Carbon nanotubes (CNTs) have unusual physical properties that are valuable for nanotechnology and electronics, but the chemical synthesis of chirality‐ and diameter‐specific CNTs and π‐conjugated CNT segments is still a great challenge. Reported here are the selective syntheses, isolations, characterizations, and photophysical properties of two novel chiral conjugated macrocycles ([4]cyclo‐2,6‐anthracene; [4]CAn2,6 ), as (?)/(+)‐(12,4) carbon nanotube segments. These conjugated macrocyclic molecules were obtained using a bottom‐up assembly approach and subsequent reductive elimination reaction. The hoop‐shaped molecules can be directly viewed by a STM technique. In addition, chiral enantiomers with (?)/(+) helicity of the [4]CAn2,6 were successfully isolated by HPLC. The new tubular CNT segments exhibit large absorption and photoluminescence redshifts compared to the monomer unit. The carbon enantiomers are also observed to show strong circularly polarized luminescence (glum≈0.1). The results reported here expand the scope of materials design for bottom‐up synthesis of chiral macrocycles and enrich existing knowledge of their optoelectronic properties.  相似文献   

17.
Phase diagrams of multi‐wall carbon nanotube (MWNT)/nematic liquid crystal (E7) and buckminsterfullerene (C60I h)/nematic liquid crystal (E7) binary systems have been investigated by means of polarizing optical microscopy and differential scanning calorimetry. It was found that the isotropic–nematic phase transition temperature (T NI) of the liquid crystal component was enhanced by the incorporation of MWNT within a small composition gap. A chimney‐type phase diagram can be identified in the MWNT/E7 mixture over a narrow range of ~0.1–0.2% MWNT concentration. Upon substituting the nanotubes with isotropic fillers such as fullerene, the (C60I h)/E7 blend showed no discernible change of T NI in the same concentration range of the chimney of the MWNT/E7 mixture, suggesting a significant contribution of anisotropy (or the aspect ratio) of the nanotubes to the entropy of the system containing liquid crystal molecules. This enhanced T NI phenomenon may be attributed to anisotropic alignment of liquid crystal molecules along the carbon nanotube bundles.  相似文献   

18.
Ion mobility coupled with mass spectrometry provides a fast and repeatable method to separate catechin epimers by previous complexation with selected chiral modifiers and transition metals. Several combinations with chiral ligands such as D‐ and L‐amino acids and/or additional metal cations, chiral crown ethers, tartaric acid and heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin were screened for their ability to affect the separation efficiency. The clusters having the form of [2M + D‐amino acid + Cu2+ ? 3H]? (M stands for (?)‐epicatechin or (+)‐catechin) showed improvement in stereodifferentiation between two epimeric catechins in comparison to the analysis of pure epimers, where no separation was observed or the separation was hampered by the formation of mixed dimer complexes. Among various examined D‐amino acids only those possessing hydrophobic side chains induced the improvement of separation efficiency. The best peak‐to‐peak resolution (Rp–p) was determined to be 0.71 for [2M + D‐Leucine + Cu2+ ? 3H]? clusters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The temperature dependence of the mean size of nanoscale free‐volume holes, 〈Vh〉, in polymer blend system consisting of polar and nonpolar polymers has been investigated. The positron lifetime spectra were measured for a series of polymer blends between polyethylene (PE) and nitrile butadiene rubber (NBR) as a function of temperature from 100 to 300 K. The glass transition temperatures (Tg) for blends were determined from the ortho‐positronium (o‐Ps) lifetime τ3 and the mean size of free‐volume holes 〈Vh〉 versus temperature as a function of wt % of NBR. The Tgs estimated from the PALS data agree very well with those estimated from DSC in view of different time scales involved in the two measurements. Both DSC and PALS results for the blends showed two clear Tgs of a two‐phase system. Furthermore, from the variation of thermal expansivity of the nanoscale free‐volume holes, the thermal expansion coefficients of glass and amorphous phases were estimated. Variations of the o‐Ps formation probability I3 versus temperature for pure PE and blends with low wt % of NBR were interpreted on the basis of the spur reaction model of Ps formation with reference to the effects of localized electrons and trapping centers produced by positron irradiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 227–238, 2009  相似文献   

20.
The effect of nanoscale confinement on the glass transition temperature, Tg, of freely standing polystyrene (PS) films was determined using the temperature dependence of a fluorescence intensity ratio associated with pyrene dye labeled to the polymer. The ratio of the intensity of the third fluorescence peak to that of the first fluorescence peak in 1-pyrenylmethyl methacrylate-labeled PS (MApyrene-labeled PS) decreased with decreasing temperature, and the intersection of the linear temperature dependences in the rubbery and glassy states yielded the measurement of Tg. The sensitivity of this method to Tg was also shown in bulk, supported PS and poly(isobutyl methacrylate) films. With free-standing PS films, a strong effect of confinement on Tg was evident at thicknesses less than 80–90 nm. For MApyrene-labeled PS with Mn = 701 kg mol−1, a 41-nm-thick film exhibited a 47 K reduction in Tg relative to bulk PS. A strong molecular weight dependence of the Tg-confinement effect was also observed, with a 65-nm-thick free-standing film exhibiting a reduction in Tg relative to bulk PS of 19 K with Mn = 701 kg mol−1 and 31 K with Mn = 1460 kg mol−1. The data are in reasonable agreement with results of Forrest, Dalnoki-Veress, and Dutcher who performed the seminal studies on Tg-confinement effects in free-standing PS films. The utility of self-referencing fluorescence for novel studies of confinement effects in free-standing films is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2754–2764, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号