首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Sample treatment procedures were evaluated for fractionation of phosphorous in plant materials (determination of organic and inorganic, soluble and insoluble fractions). The procedures aimed the conversion of different species into orthophosphate, minimizing time, reagent amounts and waste generation. A monosegmented flow system with multicommutation was developed for the spectrophotometric determination of orthophosphate by the molybdenum blue method. Linear response within 0.5 and 25.0 mg L− 1 P, detection limit of 24 μg L− 1 P (99.7% confidence level), coefficient of variation of 3.5% (n = 10) and sampling rate of 38 measurements per hour were estimated. Each determination consumes 5.0 mg ascorbic acid and 0.60 mg of ammonium molybdate. Total phosphorous determination can be carried out after microwave-assisted acid digestion by employing 100 mg of plant material and 500 μL of concentrated HNO3. Extraction of soluble phosphorous can be carried out with water by stirring for 10 min and organic soluble phosphorous can be determined either after microwave-assisted acid digestion or photodegradation in the presence of ammonium persulfate in acid medium. The results for the different fractions agreed with those obtained by ICP OES at the 95% confidence level.  相似文献   

2.
Two greener procedures for flow-injection spectrophotometric determination of nitrite in natural waters were developed and critically compared. Replacement of toxic reagents, waste minimization and treatment were exploited to attend the standards of clean chemistry. The flow system was designed with solenoid micro-pumps in order to minimize reagent consumption and waste generation. The first procedure is based on the Griess diazo-coupling reaction with sulfanilamide and N-(1-naphthyl)ethylenediamine (NED) yielding an azo dye, followed by photodegradation of the low amount of waste generated based on the photo-Fenton reaction. The second procedure is based on the formation of iodine from nitrite and iodide in acid medium in order to avoid the use of toxic reagents. For Griess method, linear response was achieved up to 1.0 mg L− 1, described by the equation A = − 0.007 + 0.460C (mg L− 1), r = 0.999. The detection limit was estimated as 8 μg L− 1 at the 99.7% confidence level and the coefficient of variation was 0.8% (n = 20). The sampling rate was estimated as 108 determinations per hour. The consumption of the most toxic reagent (NED) is reduced 55-fold and 20-fold in comparison to batch method and flow injection with continuous reagent addition, respectively. A colorless residue was obtained by in-line photodegradation with reduction of 87% of the total organic carbon content. The results obtained for natural water samples were in agreement with those achieved by the reference method at the 95% confidence level. For the nitrite–iodide method, linear response was observed up to 2.0 mg L− 1, described by the equation A = − 0.024 + 0.148C (mg L− 1), r = 0.999. The detection limit was estimated as 25 μg L− 1 at the 99.7% confidence level and the coefficient of variation was 0.6% (n = 20). The sampling rate was estimated as 44 determinations per hour. Despite avoiding the use of toxic reagents, the nitrite–iodide method presented worst performance in terms of selectivity and sensitivity.  相似文献   

3.
Direct electrochemistry of glucose oxidase (GOx) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1-butyl pyridinium hexafluophosphate ([BuPy][PF6]) as binder for the first time. A pair of reversible peaks is exhibited on GOx/CILE by cyclic voltammetry. The peak-to-peak potential separation (ΔEP) of immobilized GOx is 0.056 V in 0.067 M phosphate buffer solution (pH 6.98) with scan rate of 0.1 V/s. The average surface coverage and the apparent Michaelis–Menten constant are 6.69 × 10−11 mol·cm−2 and 2.47 μM. GOx/CILE shows excellent electrocatalytic activity towards glucose determination in the range of 0.1–800 μM with detection limit of 0.03 μM (S/N = 3). The biosensor has been successfully applied to the determination of glucose in human plasma with the average recoveries between 95.0% and 102.5% for three times determination. The direct electrochemistry of GOx on CILE is achieved without the help of any supporting film or any electron mediator. GOx/CILE is inexpensive, stable, repeatable and easy to be fabricated.  相似文献   

4.
A simple and efficient liquid-phase microextraction (LPME) technique was developed using directly suspended organic microdrop coupled with gas chromatography–mass spectrometry (GC–MS), for the extraction and the determination of phthalate esters (dimethyl phthalate, diethyl phthalate, diallyl phthalate, di-n-butyl phthalate (DnBP), benzyl butyl phthalate (BBP), dicyclohexyl phthalate and di-2-ethylhexyl phthalate (DEHP)) in water samples. Microextraction efficiency factors, such as nature and volume of the organic solvent, temperature, salt effect, stirring rate and the extraction time were investigated and optimized. Under the optimized extraction conditions (extraction solvent: 1-dodecanol; extraction temperature: 60 °C; microdrop volume: 7 μL; stirring rate: 750 rpm, without salt addition and extraction time: 25 min), figures of merit of the proposed method were evaluated. The values of the detection limit were in the range of 0.02–0.05 μg L−1, while the R.S.D.% value for the analysis of 5.0 μg L−1 of the analytes was below 7.7% (n = 4). A good linearity (r2 ≥ 0.9940) and a broad linear range (0.05–100 μg L−1) were obtained. The method exhibited enrichment factor values ranging from 307 to 412. Finally, the designed method was successfully applied for the preconcentration and determination of the studied phthalate esters in different real water samples and satisfactory results were attained.  相似文献   

5.
A spectrophotometric method for the determination of triclosan in personal care products was proposed. It was based on the reaction of sodium nitrite with p-sulfanilic acid in an acidic medium to form diazonium ion, with which triclosan further formed an azo compound in an alkaline medium. The resulting yellow colored product has a maximum absorption at 452 nm. A good linear relationship (r = 0.9999) was obtained in the range of 0–30 mg L−1 triclosan. A detection limit of 0.079 g L−1 was achieved and the relative standard deviation was 0.24% (n = 11) at 14 mg L−1 triclosan. The proposed method has been applied to the analyses of triclosan in several personal care products and the results were in good agreement with those obtained by high-performance liquid chromatography.  相似文献   

6.
A molecularly imprinted polymer has been synthesized for a selective on-line catechol extraction, followed by its spectrophotometric determination in guarana powder, mate tea and tap water samples. A clean-up column, containing a methacrylic polymer + C18 solid phase, was also used in order to enhance selectivity. The imprinted polymer was prepared by bulk polymerization using catechol as template and 4-vinylpyridine as the functional monomer. Permanganate solution was used as spectrophotometric reagent, where Mn(VII) was reduced to Mn(II) by catechol in an acid medium, causing color loss, which was monitored at 528 nm. Physical (extraction flow rate, elution flow rate, coil length) and chemical (nature and concentration of the eluent, potassium permanganate concentration) variables were optimized, and the selectivity was appraised using three molecules (4-chloro-2-methylphenol, 2-cresol, 2-methoxyphenol) similar to catechol. These molecules did not present interference in 1:8, 1:10 and 1:10 (catechol/concomitant) proportions, respectively. The analytical calibration curve ranged from 3.0 up to 100 μmol L− 1 (r > 0.999; seven concentrations levels, n = 3) and the limits of detection (LOD) and quantification (LOQ) were 0.8 and 2.7 μmol L− 1, respectively. Precision, expressed as RSD, was of 3.0% (20 μmol L− 1, n = 10), and the analytical frequency was 15 h− 1. Accuracy was checked by the HPLC technique and the results did not present significant difference at 95% confidence levels according to the t test.  相似文献   

7.
Wang X  Zhao X  Liu X  Li Y  Fu L  Hu J  Huang C 《Analytica chimica acta》2008,620(1-2):162-169
In this study, a new method was developed for analyzing malathion, cypermethrin and lambda-cyhalothrin from soil samples by using homogeneous liquid–liquid extraction (HLLE) and gas chromatography with electron capture detector (GC–ECD). Acetone was used as extraction solvent for the extraction of target pesticides from soil samples. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the acetone extract to carbon tetrachloride, using HLLE. Under the optimum conditions, linearity was obtained in the range of 0.05–40 μg kg−1 for malathion, 0.04–10 μg kg−1 for lambda-cyhalothrin and 0.05–50 μg kg−1 for cypermethrin, respectively. Coefficients of correlation (r2) ranged from 0.9993 to 0.9998. The repeatability was carried out by spiking soil samples at concentration levels of 2.5 μg kg−1 for lambda-cyhalothrin, and 10 μg kg−1 for malathion and cypermethrin, respectively. The relative standard deviations (RSDs) varied between 2.3 and 9.6% (n = 3). The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, varied between 0.01 and 0.04 μg kg−1. The relative recoveries of three pesticides from soil A1, A2 and A3 at spiking levels of 2.5, 5 and 10 μg kg−1 were in the range of 82.20–91.60%, 88.90–110.5% and 77.10–98.50%, respectively. In conclusion, the proposed method can be successfully applied for the determination of target pesticide residues in real soil samples.  相似文献   

8.
The electronic state of carbon in trigonal prismatic environment in [Re12CS17(CN)6]n complexes with variable redox state n = 6 ↔ 8 was studied by molecular orbital method and electron localization function. The state is characterized by sp2-hybridisation and oxidation state −4. A weak long-distance interaction between μ6-С and μ2-S in the group [(μ6-С)(μ2-S)3] was discovered for n = 6, the interaction disappears for n = 8.  相似文献   

9.
An amperometric enzyme electrode based on direct covalent immobilization of tyrosinase on a boron-doped diamond (BDD) electrode has been developed for the detection of phenolic compounds. Combined chemical and electrochemical modifications of the BDD film with 4-nitrobenzenediazonium tetrafluoroborate, an aminophenyl-modified BDD (AP–BDD) surface was produced, and then the tyrosinase was covalently immobilized on the BDD surface via carbodiimide coupling. The response dependences of the enzyme electrode (Tyr–AP–BDD electrode) on pH of solution, applied potential, oxygen level and phenolic compounds diffusion were studied. The Tyr–AP–BDD electrode shows a linear response range of 1–200, 1–200 and 1–250 μM and sensitivity of 232.5, 636.7 and 385.8 mA M−1 cm−2 for phenol, p-cresol and 4-chlorophenol, respectively. 90 percent of the enzyme activity of the Tyr–AP–BDD electrode is retained for 5 weeks storing in 0.1 M PBS (pH 6.5) at 4 °C.  相似文献   

10.
Gold nanorods (GNRs) with suitable aspect ratio were synthesized with a template technique and then dispersed in a saturated sodium citrate solution by ultrasonication to form a GNR suspension. A GNR-modified electrode was fabricated using the GNR suspension. The oxidation of dopamine at the GNR/GC electrode exhibited surprisingly high electrocatalytic activity and adsorption-controlled characteristics. Square-wave voltammetry was used to detect dopamine. At the GNR/GC electrode, the linear concentration range of DA is from 1 × 10−8 M to 1 × 10−7 M and the detection limit (s/n = 3) is as low as 5.5 × 10−9 M. The current sensitivity is 3.280 μA/μM, and 1000-fold ascorbic acid (AA) cannot interfere with the determination of DA. All these performances are greatly superior to those of the bare GC electrode.  相似文献   

11.
Salicylaldehyde rhodamine B hydrazone (SRBH) was developed as a new spectrofluorimetric probe for the selective and sensitive detection of CrO42− in acidic conditions. The proposed method was based on the special oxidation reaction between non-fluorescent SRBH by potassium dichromate to produce a highly fluorescent rhodamine B, as a product. Under the optimum conditions described, the fluorescence enhancement at 591 nm was good linearly related to the concentration of CrO42− from 1.0 × 10−8 to 3.0 × 10−7 M (0.42–12.6 ng mL−1) with a correlation coefficient of R2 = 0.9989 (n = 10) and a detection limit of 1.5 × 10−9 M (0.063 ng mL−1). The relative standard deviation (R.S.D.) was 2.0% (n = 6). The proposed method was also successfully applied to the determination of chromium (VI) in drinking water, river water and synthetic samples.  相似文献   

12.
《Analytical letters》2012,45(14):2037-2052
A rapid and simple flow injection (FI) method is reported for the determination of vitamin A (retinol) based on its strong enhancing effect on the Ce(IV)–Na2SO3 chemiluminescence (CL) reaction in an acidic solution. The effect of key chemical and physical parameters (i.e., reagent concentrations, flow rate, and sample volume) was optimized and potential interferences examined. Under the selected experimental conditions, a linear calibration was obtained between the CL intensity and vitamin A concentration in the range 0.1–8.0 µg mL?1 (r 2  = 0.9986, n = 8). The limit of detection (3 s x blank) was 0.01 µg mL?1 retinol (n = 6) and the relative standard deviation (RSD) for 0.25 µg mL?1 retinol was 2.3% (n = 10) with a sampling rate of 180 h?1. The method was successfully applied to infant milk-based formulas and pharmaceutical formulations and the results were not significantly different at 95% confidence interval with those obtained by using a spectrophotometric reference method. The possible CL mechanism is also discussed briefly supporting with UV-visible, fluorescence, and CL spectra.  相似文献   

13.
Ascorbic acid is determined by a simple Bead Injection Spectroscopy–Flow Injection Analysis (BIS–FIA) system with spectrophotometric detection. The sensor is based on the decrease of absorbance obtained (720 nm) when Prussian blue (PB) is reduced by ascorbic acid. Commercial available flow-cell (Hellma 138-OS) is used and an appropriate volume of homogeneous bead suspension of Sephadex QAE A-25 was injected to fill this flow-cell for each measurement. The chromogenic reagent (PB) is injected into the carrier and immobilized on beads. When sample is injected, reaching the bead surface where PB is sorbed, ascorbic acid converts it to Prussian white form, which is transparent, producing the discoloration of the detection zone. At the end of the analysis, beads are discarded by reversing the flow and instantaneously transported out of the system.The calibration graph was linear over the range 5.1×10−6–6.8×10−5 M. The detection limit and RSD (%) were 4.5×10−7 M and 5.0%, respectively, using 800 μl of sample volume. This method is highly selective in the presence of other species that are normally encountered with the analyte. The sensor was applied satisfactorily to the determination ascorbic acid in fruit juices, pharmaceuticals, sweets and conservative liquids.  相似文献   

14.
Gel filtration chromatography using a TSKgel G2000 SW column coupled with differential refractive index detection was used to analyse five grades of polyvinyl alcohol. Limits of detection and quantification for the assay were 0.14 mg mL–1, 0.47 mg mL–1 respectively. The inter and intra-day co-efficient of variance were both <7%. There was a significant difference (p<0.05, n=5) between the calibration curves across the five grades of PVA due to a refractive index range of 13.0790 –1.3181 (n=3). The assay accuracy was 98.99% ± 8.97% (n=5) and 90.60% ± 7.87% (n=5) of a spiked PVA sample was recovered from a commercial formulation.  相似文献   

15.
Quercetin can effectively accumulate at multi-walled carbon nanotubes-paraffin oil paste electrodes (CNTPE) and cause a sensitive anodic peak at around 0.32 V (vs. SCE) in a 0.10 M phosphate buffer solution (pH = 4.0). Under optimized conditions, the anodic peak current is linear to quercetin concentration in the ranges of 2.0 × 10− 9−1.0 × 10− 7 M and 1.0 × 10− 7−2.0 × 10− 5 M, and the regression equations are ip (μA) = 0.0017 + 0.928c (μM, r = 0.999) and ip (μA) = 0.183 + 0.0731c (μM, r = 0.995), respectively. This paste electrode can be regenerated by repetitively cycling in a blank solution for about 2 min. A 1.0 × 10− 6 M quercetin solution is measured for 10 times using the same electrode regenerated after every determination, and the relative standard deviation of the peak current is 1.7%. The method has been applied to the determination of quercetin in hydrolysate product of rutin and the recovery is 99.2–102.6%. In comparison with graphite paste electrode, carbon nanotubes-nujol paste electrode and carbon nanotubes casting film modified glassy carbon electrode, the CNTPE gives higher ratio of signal to background current and better defined voltammetric peak.  相似文献   

16.
A multi-pumping flow-based procedure with chemiluminescent detection is proposed for the determination of ascorbic acid, AA, in fruit juices (powdered form). The method relies on the inhibitory effect of AA on the oxidation of luminol by hydrogen peroxide in alkaline medium. The system comprises several discretely actuated solenoid pumps as the only active components. It handles 100 samples per hour, and requires 96 μl of sample, 42 μg of luminol and 105 μg of potassium hexacyanoferrate(III) per determination. The analytical curve is linear up to about 11 mmol l− 1 AA, and detection limit is 0.17 mmol l− 1 AA. The system yields precise measurements (r.s.d. < 1%; n = 11), and recovery ranges from 94% to 106%. Results are in agreement with the reference method (AOAC) at the 95% confidence level.  相似文献   

17.
A flow-injection system for the determination of 3-hydroxybutyrate in serum is described. 3-Hydroxybutyrate dehydrogenase is immobilized on poly(vinyl alcohol) beads and incorporated in a flow-injection system. 1-Methoxy-5-methylphenazinium methylsulphate reacts with enzymatically generated NADH to give H2O2, which is detected chemiluminometrically with the reaction of luminol and hexacynoferrate(III). Serum is diluted and filtered through an ultrafiltration membrane. The system responds linearly to injected samples (80 μl) in the concentration range 0.5–300 μM; the detection limit is 0.1 μM. The within-day relative standard deviation (n = 90) for 58 μM 3-hydroxybutyrate in serum is 0.8%. The maximum throughout is 20 samples per hour. The immobilized enzyme is stable for at least 1 month.  相似文献   

18.
A new method for the simultaneous determination of fluorine and iodine in urine by ion chromatography(IC) with electrochemical pretreatment has been developed.The pretreatment was performed in a novel electrochemical oxidation-neutralization device(EOND),in which iodide of the sample was oxidized to iodate and the alkaline digestion sample solution was neutralized.Under the optimized conditions,the limits of detection(LOD,S/N = 3) were 2.5μg/L for fluoride and 20μg/L for iodate,respectively.The recoverie...  相似文献   

19.
This work reports on a novel nanosized calcium carbonate–chitosan (nanoCaCO3–chi) composite film fabricated by a one-step co-electrodeposition method. The generated nanoCaCO3-based matrix possessed a three-dimensional (3D) porous, network-like structure, providing a favorable and biocompatible microenvironment to immobilize enzyme. By using such a composite film as enzyme immobilization matrix, a highly sensitive and stable acetylcholinesterase (AChE) sensor was achieved for determination of methyl parathion as a model of organophosphate pesticides (OPs) compounds. The inhibition of methyl parathion was proportional to its concentration ranging from 0.005–0.2 to 0.75–3.75 μg mL−1. The detection limit was found to be as low as 1 ng mL−1 (S/N = 3). The designed biosensor exhibited good reproducibility and acceptable stability.  相似文献   

20.
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/(I − I0) with concentration of edaravone was linear in the range of (1.45–17.42) μg/mL (0.008–0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号