首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
A change in the local order of a bounded complex (dusty) plasma in the process of its crystallization and melting has been examined by molecular dynamics simulations. The dynamics of microparticles is considered in the framework of a Langevin thermostat, the pair interaction between charged particles is described by a screened Coulomb potential (Yukawa potential) with the hard wall potential as a confinement. It has been shown that the beginning of the crystallization of such a system is accompanied by the formation of clusters with the hexagonal close packed (hcp) structure; a noticeable number of these clusters are then transformed to the face centered cubic (fcc) phase. A plasma crystal formed after crystallization consists of the metastable hcp phase, fcc clusters, and a small number of clusters with a body centered cubic (bcc) crystal lattice. Beginning with a certain threshold value of the thermostat temperature, the number of fcc/bcc clusters decreases sharply with increasing temperature, which is an important signature of the beginning of the melting of the plasma crystal.  相似文献   

2.
The effect of confinement on the pair correlation function of microparticles whose interaction is described by a screened Coulomb potential (Yukawa potential) has been investigated by the molecular dynamics simulations. The data are used to solve the inverse problem of the reconstruction of the particle interaction potential. It has been shown that such a reconstruction is likely impossible for a strongly nonideal system (with the coupling parameter Γ > 1). For systems with Γ ≤ 1, reconstruction is possible if confinement does not lead to the strong inhomogeneity of the system of microparticles.  相似文献   

3.
Two-dimensional equilibrium configurations of the dust component of a complex plasma in narrow channels have been numerically simulated by the molecular dynamics method for various forms of the confinement potential such as the parabolic potential and potential well. The interaction between the charged dust particles is described by a screened Coulomb potential with allowance for the interaction of microparticles with a neutral gas. It has been shown that the form of the confinement potential strongly affects the local order of the microparticles in such a system.  相似文献   

4.
用MonteCarlo方法对处于两平行硬板约束下三个浓度的大小胶球系统进行了模拟,通过对大胶球表面小胶球密度的统计,由密度积分公式获得了大胶球所受的排空力.研究结果显示,因为平行硬板的存在或当改变两平行硬板的距离时,同浓度下,排空力在硬板距离小的时候最明显;三个浓度中,浓度高的,排空力受硬板距离影响最大;有硬板约束比无该约束的时候,排空力效果更显著.  相似文献   

5.
NMR studies on liquids in various types of confinements are reviewed. The discussion includes results for the size, the morphology, and the filling of pores. Moreover, it deals with the phase behaviors, the local structures, and in particular, the local dynamics of confined liquids. Findings for soft and hard confinements of various sizes are considered. The main focus is on the time scales of and the mechanisms for dynamics of simple liquids in simple confinements. From the methodical point of view, the review is restricted to NMR work in homogeneous magnetic fields, i.e, field-gradient approaches are not included.  相似文献   

6.
Binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, parabolic confinement and rectangular confinement are calculated as a function of dot radius in the influence of electric field. The binding energy is calculated following a variational procedure within the effective mass approximation along with the spatial depended dielectric function. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. It is found that the contribution of spatially dependent screening effects are small for a donor impurity and it is concluded that the rectangulax confinement is better than the parabolic and spherical confinements. These results are compared with the existing literature.  相似文献   

7.
Melting of two-dimensional (2D) clusters of classical particles is studied using Brownian dynamics and Langevin molecular dynamics simulations. The particles are confined either by a circular hard wall or by a parabolic external potential and interact through a dipole or a screened Coulomb potential. We found that, with decreasing strength of the interparticle interaction, clusters with a short-range interparticle interaction and confined by a hard wall exhibit a reentrant behavior in its orientational order.  相似文献   

8.
The considered host materials are well suited to confine quasi-(1d) molecular phases, seeing that their porosities are composed of parallel unconnected cylindrical pores. For such a simple geometry, confinement effects can be simply described by a single parameter, the pore diameter phi. Our study concerns medium and ultra confinement ranges ( 40 A >or= ? >or= 7.3 A). The primary effect of such confinements is the decrease of the molecular interactions within the confined phase. As a consequence, we have observed strong triple point depressure Delta T(3t) effects for hydrogen and water confined phases in MCM-41 samples. In the limit case of (1d) phase (the neopentane/AlPO(4)-5 system) it seems that a molecular mobility is observed even at very low temperature T=5 K. The secondary confinement effect is an increase of the interactions between the host inner surface and the confined molecular assembly induced by the pore diameter decreasing. Such host material influence gives rise, for medium range confinement to the physisorption of a curved solid film on the inner surface before the capillary phase condensation (hydrogen/MCM-41 (24 A)) and for ultra confinement to the solidification of the confined phase when the molecular species are commensurate with the inner surface sites (methane/AlPO(4)-5).  相似文献   

9.
A fundamental result in nonrelativistic quantum nonlinear dynamics is that the spectral statistics of quantum systems that possess no geometric symmetry, but whose classical dynamics are chaotic, are described by those of the Gaussian orthogonal ensemble (GOE) or the Gaussian unitary ensemble (GUE), in the presence or absence of time-reversal symmetry, respectively. For massless spin-half particles such as neutrinos in relativistic quantum mechanics in a chaotic billiard, the seminal work of Berry and Mondragon established the GUE nature of the level-spacing statistics, due to the combination of the chirality of Dirac particles and the confinement, which breaks the time-reversal symmetry. A question is whether the GOE or the GUE statistics can be observed in experimentally accessible, relativistic quantum systems. We demonstrate, using graphene confinements in which the quasiparticle motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are persistently those of GOE random matrices. We present extensive numerical evidence obtained from the tight-binding approach and a physical explanation for the GOE statistics. We also find that the presence of a weak magnetic field switches the statistics to those of GUE. For a strong magnetic field, Landau levels become influential, causing the level-spacing distribution to deviate markedly from the random-matrix predictions. Issues addressed also include the effects of a number of realistic factors on level-spacing statistics such as next nearest-neighbor interactions, different lattice orientations, enhanced hopping energy for atoms on the boundary, and staggered potential due to graphene-substrate interactions.  相似文献   

10.
郭纪源  黄立新  肖长明 《中国物理》2006,15(7):1638-1644
The depletion interactions between two large-spheres immersed in a fluid of small spheres under unsymmetrical geometrical confinement are studied through the acceptance ratio method. The numerical results show that no matter whether the volume fraction is large or small, both the depletion potential and depletion force are affected by the presence of the two plates; the closer the two large spheres are to the plate, the larger the effects of the unsymmetrical confinements.  相似文献   

11.
The confinements of water can be divided into two main categories,namely,the confinements on surface or interface and the confinements in bulk water.By adding ions or applying electric field,the intensity and distribution of the hydrogen bonds can be greatly affected.These are collectively known as confinement on water surface or interface,which has potential applications in life science and industries involving evaporation control.Confined bulk water could be found everywhere in nature,such as in granular and porous materials,macromolecules and gels,etc.The investigation of the physical properties and the transports of the confined bulk water will contribute to understanding certain types of life activities such as the water transport in plant and in new application of extracting the shale oil and water.  相似文献   

12.
The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional(2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement.We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures.  相似文献   

13.
A simple numerical method for solving a two-terminal quantum electronic waveguide problem is presented. The method can be adapted to a quantum wire cavity of irregular geometry and/or non-constant potential field. We compare the circular bend wire with parabolic confining potential profile to the commonly used hard wall confinement. We find an energy scaling which makes the results correspond closely.  相似文献   

14.
We explore the dynamics of viscous propylene glycol (PG) near its glass transition for the case of soft spatial confinement. The supercooled liquid is geometrically restricted by the reverse micelles of a glass-forming PG/AOT/decalin microemulsion, with the intramicellar dynamics being probed by triplet state solvation dynamics. While hard confinement by porous solids is known to result in slower dynamics and an increased glass transition temperature T(g) of PG, the nanodroplets suspended in a more fluid environment display faster structural relaxation, equivalent to a reduction of T(g) as observed in freestanding polymer films.  相似文献   

15.
It is shown that the confinement of polymer melts in nanopores leads to chain dynamics dramatically different from bulk behavior. This so-called corset effect occurs both above and below the critical molecular mass and induces the dynamic features predicted for reptation. A spinodal demixing technique was employed for the preparation of linear poly(ethylene oxide) (PEO) confined to nanoscopic strands that are in turn embedded in a quasi-solid and impenetrable methacrylate matrix. Both the molecular weight of the PEO and the mean diameter of the strands were varied to a certain degree. The chain dynamics of the PEO in the molten state was examined with the aid of field-gradient NMR diffusometry (time scale, 10(-2)-10(0) s) and field-cycling NMR relaxometry (time scale, 10(-9)-10(-4) s). The dominating mechanism for translational displacements probed in the nanoscopic strands by either technique is shown to be reptation. On the time scale of spin-lattice relaxation time measurements, the frequency dependence signature of reptation (i.e., T1 approximately nu(3/4)) showed up in all samples. A "tube" diameter of only 0.6 nm was concluded to be effective on this time scale even when the strand diameter was larger than the radius of gyration of the PEO random coils. This corset effect is traced back to the lack of the local fluctuation capacity of the free volume in nanoscopic confinements. The confinement dimension is estimated at which the crossover from confined to bulk chain dynamics is expected.  相似文献   

16.
The self-consistency (S-C) constraints on the solute chemical potential and equation of state are stated and employed to find corrections to thermodynamic functions in the colloidal limit for the most often used equations of state. It is shown that the S-C approach and Henderson's expression for the contact radial distribution functions yield the same correction term in the case of the Boublik—Mansoori—Carnahan—Starling—Leland (BMCSL) equation of state for hard spheres. For hard sphere (and hard convex body) mixtures a new variant of the equation of state and Helmholtz energy is proposed that fulfils better the self-consistency constraints than the frequently used equations. It is shown that the correction term for Δμ 2 in hard convex body mixtures described by improved scaled particle theory differs from that for BMCSL only by the non-sphericity parameter. For the Kolafa—Boublik and modified scaled particle theory versions the correction terms are more complex.  相似文献   

17.
张振中  蒋昌忠  常凯 《计算物理》2006,23(4):470-476
采用一种非线性的优化方法,研究了处于硬壁限制势下二维带电多粒子系统的基态,分析不同形状边界对系统基态构型的影响.由于圆形边界对称性高,基态结构和抛物限制势下情况相似.在正方形边界下,当系统粒子数N<66时,荷电粒子形成方形晶格;当N≥66时,由于边界影响被削弱,内层粒子形成六角维格纳晶格.进一步分析了椭圆和矩形边界对维格纳晶格的影响.  相似文献   

18.
In this article we study the impact of the spin-orbit interaction on the electron quantum confinement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb interaction and the spin-splitting are suppressed in quantum dots with small height. Received 15 May 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

19.
许少锋  汪久根 《物理学报》2013,62(12):124701-124701
利用耗散粒子动力学(dissipative particle dynamics, DPD)方法模拟了微通道中高分子溶液的Poiseuille流动.研究表明, 微通道中的高分子溶液呈现非牛顿流体特性, 可以用幂律流体来描述流动行为, 高分子浓度越大, 幂律指数n 越小. 高分子链与壁面的流体动力学相互作用以及布朗扩散率梯度控制着高分子链的横向迁移. 由于传统的DPD方法中壁面诱导的流体动力学作用部分被屏蔽, 高分子链将向壁面方向迁移, 并且随着流场增强, 高分子链向壁面方向迁移越明显. 未被屏蔽的流体动力学相互作用和布朗扩散率梯度相互竞争, 使高分子链在微通道内的质心分布呈双峰状, 通道中心处高分子浓度出现局部最小值. 当通道宽度减小、强受限时, 壁面与高分子链间的流体动力学相互作用可能全部被屏蔽, 而布朗扩散运动弱, 高分子向壁面方向有微弱的迁移. 关键词: 耗散粒子动力学 高分子溶液 非牛顿流体 横向迁移  相似文献   

20.
The orbital magnetism of two-dimensional electrons in mesoscopic samples is studied in models where the interaction between electrons is neglected. Various geometries are considered as there are disc, plaquette, bracelet with hard wall confinement and also a confinement with a parabolic potential. We calculate the average magnetic moment which means an average with respect to size fluctuations and de Haas-van Alphen oscillations which arise in the case of a sharp Fermi cutoff. We see three distinct ranges in the magnetic field: (i) small field region where perturbation theory applies; (ii) moderate fields where edge currents play a prominent role; and (iii) the high field range with a Landau type susceptibility. In a quasiclassical picture, the electronic orbits are not qualitatively changed by a magnetic field in (i); skipping orbits are important in (ii); and in (iii), the cyclotron radius is smaller than the sample size. As a rule, we find an enhancement of the magnetic response which increases with kFL, that is, with sample size divided by the Fermi wave length. Also, we have found out that the quasiclassical approximation fails in the calculation of the magnetic properties; on the other hand, we have seen no essential differences between the canonical ensemble (fixed particle number) and the grand canonical ensemble (chemical potential given). In the case of plaquettes, in particular for samples in the form of squares, we have found agreement with experimental results by Lévy, Reich, Pfeiffer and West.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号