首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xanthine oxidase (XOD) catalyzes the metabolism of hypoxanthine and xanthine to uric acid, the overproduction of which could cause hyperuricemia, a risk factor for gout. Inhibition of XOD is a major treatment for gout, and biflavonoids have been found to act as XOD-inhibitory compounds. In this study, ultrafiltration liquid chromatography with photodiode-array detection coupled to electrospray-ionization tandem mass spectrometry (UF-LC-PDA–ESI-MS) was used to screen and identify XOD inhibitors from S. tamariscina. High-performance counter-current chromatography (HPCCC) was used to separate and isolate the active constituents of these XOD inhibitors. Furthermore, ultrahigh-performance liquid chromatography (UPLC) and triple-quadrupole mass spectrometry (TQ-MS) was used to determine the XOD-inhibitory activity of the obtained XOD inhibitors, and enzyme kinetics was performed with Lineweaver–Burk (LB) plots using xanthine as the substrate. As a result, two compounds in S. tamariscina were screened as XOD inhibitors: 65.31 mg amentoflavone and 0.76 mg robustaflavone were isolated from approximately 2.5 g?S. tamariscina by use of HPCCC. The purities of the two compounds obtained were over 98 % and 95 %, respectively, as determined by high-performance liquid chromatography (HPLC). Lineweaver–Burk plot analysis indicated that amentoflavone and robustaflavone were non-competitive inhibitors of XOD, and the IC 50 values of amentoflavone and robustaflavone for XOD inhibition were 16.26 μg mL?1 (30.22 μmol L?1) and 11.98 μg mL?1 (22.27 μmol L?1), respectively. The IC 50 value of allopurinol, used as the standard, was 7.49 μg mL?1 (46.23 μmol L?1). The results reveal that the method for systematic screening, identification, and isolation of bioactive components in S. tamariscina and for detecting their inhibitory activity using ultrafiltration LC–ESI-MS, HPCCC, and UPLC–TQ-MS is feasible and efficient, and could be expected to extend to screening and separation of other enzyme inhibitors. Graphical Abstract
?  相似文献   

2.
Streptococcus mutans (S. mutans) forms part of the commensal microflora and is deemed to be the major pathogen responsible for the generation of dental caries. The enzyme, sortase A enzyme, modulates the surface properties and cariogenicity of S. mutans. Curcumin has been reported to be an inhibitor of Staphylococcus aureus sortase A. In this study, inhibition of a purified S. mutans UA159 sortase A by curcumin was evaluated. Curcumin exerted strong inhibitory activity with a half maximal inhibitory concentration (IC50) of 10.2?±?0.7 μM which was lower than the minimum inhibitory concentration of 175 μM and the minimum bactericidal concentration of 350 μM. These results indicated that curcumin is a S. mutans UA159 sortase A inhibitor and therefore represents as a promising anticaries agent.  相似文献   

3.
Xanthine oxidase (XOD) is a key enzyme in the human body to produce uric acid, and its inhibitor can be used for the treatment of hyperuricemia and gout. In this study, an online CE-based XOD immobilized enzyme microreactor (IMER) was developed for the enzyme kinetics assays and inhibitor screening. After 30 consecutive runs, the XOD activity remained about 95.6% of the initial immobilized activity. The Michaelis–Menten constant (Km) of the immobilized XOD was determined as 0.39 mM using xanthine as substrate. The half-maximal inhibitory concentration and inhibition constant of the known inhibitor 4-aminopyrazolo[3,4-d]pyrimidine on XOD were determined as 11.9 and 5.2 μM, respectively. Then, the developed method was applied to evaluate the XOD inhibitory activity of 10 flavonoids, which indicated that dihydroquercetin, quercetin, biochanin A, and epicatechin had significant inhibitory effect on XOD. In addition, molecular docking results verified that the binding energy of the flavonoids with enzyme were in line with their inhibitory activity determined by XOD–IMER. Therefore, the developed XOD–IMER is a potential tool for the primary screening of XOD inhibitors from natural products.  相似文献   

4.
In this study β-cyclodextrin (β-CD) was used to improve usnic acid (UA) solubility and the inclusion complex (UA:β-CD) was incorporated into liposomes in order to produce a targeted drug delivery system for exploiting the antimycobacterial activity of UA. A phase-solubility assay of UA in β-CD at pH 7.4 was performed. An apparent stability constant of K1:1 = 234.5 M?1 and a complexation efficiency of 0.005 was calculated. In the presence of 16 mM of β-CD the solubility of UA (7.3 μg/mL) increased more than 5-fold. The UA:β-CD complex was prepared using the freeze-drying technique and characterized through infrared and 1HNMR spectroscopy, X-ray diffraction and thermal analyses. The UA:β-CD inclusion complex presented IR spectral modifications when compared with UA and β-CD spectra. 1HNMR spectrum of UA:β-CD inclusion complex showed significant chemical shifts in proton H5 located inside the cavity of β-CD (Δδ = 0.127 ppm), suggesting that phenyl ring moiety of UA would be expected to be included within the β-CD cavity, interacting with the H-5 proton. A change in UA from its crystalline to amorphous form was observed on X-ray, suggesting the formation of a drug inclusion complex. DSC analysis showed the disappearance of the UA fusion peak UA:βCD complex. No differences between the antimicrobial activity of free UA and UA:βCD were found, supporting the hypothesis that the complexation with cyclodextrin did not interfere with drug activity. Liposomes containing UA:βCD were prepared using hydration of a thin lipid film method with subsequent sonication. Formulations of liposomes containing UA:βCD exhibited a drug encapsulation efficiency of 99.5% and remained stable for four months in a suspension form. Interestingly, the encapsulation of UA:βCD into the liposomes resulted in a modulation of in vitro kinetics of release of UA. Indeed, liposomes containing UA:β-CD presented a more prolonged release profile of free usnic acid compared to usnic acid-loaded liposomes.  相似文献   

5.
Poly(2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole) (PAPT) modified glassy carbon electrode (GCE) was fabricated and used for the simultaneous determinations of dopamine (DA), uric acid (UA) and nitrite (NO2 ?) in 0.1 mol?L?1 phosphate buffer solution (PBS, pH 5.0) by using cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The results showed that the PAPT modified GCE (PAPT/GCE) not only exhibited electrocatalytic activities towards the oxidation of DA, UA and NO2 ? but also could resolve the overlapped voltammetric signals of DA, UA and NO2 ? at bare GCE into three strong and well-defined oxidation peaks with enhanced current responses. The peak potential separations are 130 mV for DA–UA and 380 mV for UA–NO2 ? using DPV, which are large enough for the simultaneous determinations of DA, UA and NO2 ?. Under the optimal conditions, the anodic peak currents were correspondent linearly to the concentrations of DA, UA and NO2 ? in the ranges of 0.95–380 μmol?L?1, 2.0–1,000 μmol?L?1 and 2.0–1,200 μmol?L?1 for DA, UA and NO2 ?, respectively. The correlation coefficients were 0.9989, 0.9970 and 0.9968, and the detection limits were 0.2, 0.35 and 0.6 μmol?L?1 for DA, UA and NO2 ?, respectively. In 0.1 mol?L?1 PBS pH 5.0, the PAPT film exhibited good electrochemical activity, showing a surface-controlled electrode process with the apparent heterogeneous electron transfer rate constant (k s) of 25.9 s?1 and the charge–transfer coefficient (α) of 0.49, and thus displayed the features of an electrocatalyst. Due to its high sensitivity, good selectivity and stability, the modified electrode had been successfully applied to the determination of analytes in serum and urine samples.  相似文献   

6.
A polymerized film of Adizol Black B (ABB) on the surface of glassy carbon (GC) electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP), and uric acid (UA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of AA, EP, and UA by differential pulse voltammetry method. The oxidation peaks of the three compounds were well defined and had the enhanced peak currents. The separation of the oxidation peak potentials for AA–EP and EP–UA were about 180 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 2.0–1,970.0, 0.1–64.0, and 0.1–1,700.0 μmol L–1, respectively. The detection limits (S/N?=?3) were 0.01, 0.007, and 0.02 μmol L–1 for AA, EP, and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation reaction of EP at poly(ABB) film-coated GC electrode were calculated as 1.54(±0.10)?×?10?4 cm2 s?1 and 4.5?×?103 mol?1 L s?1, respectively. The present method was applied to the determination of EP in pharmaceutical, AA in commercially available vitamin C tablet, and UA in urine samples.  相似文献   

7.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

8.
Herein, platinum nanoparticles-decorated molybdenum disulfide(Pt NPs@MoS_2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy(TEM) and powder X-ray diffraction(XRD). This MoS_2-based nanocomposite modified glass carbon electrode(Pt NPs@MoS_2/GCE) exhibited excellent electrocatalytic activity toward dopamine(DA) and uric acid(UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at Pt NPs@MoS_2/GCE with a large peak separation of 160 m V(DA-UA), suggesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5–150 and 5–1000 mmol/L with detection limit of 0.17 and 0.98 mmol/L, respectively. The proposed MoS_2-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the Pt NPs@MoS_2 nanocomposite might offer a good possibility for electrochemical sensing and other electrocatalytic applications.  相似文献   

9.
The essential oil of the aerial parts of Lavandula multifida L., collected in Errachidia region (three samples) in southeast Morocco, was extracted by hydrodistillation and analyzed by GC and GC-MS. The oil was predominated by carvacrol (57.9–59.0%). L. multifida oil was tested as corrosion inhibitor of C38 steel in 0.5 M H2SO4 using weight loss measurements, electrochemical polarization, and EIS methods. The results obtained by measurements of weight loss showed that inhibition efficiency increases with inhibitor concentration to attain 72.2% at 2 g/l of oil at 298 K. Polarization curves revealed that L. multifida oil acts as mixed type inhibitor. The temperature effect on the corrosion behavior of steel in 0.5 M H2SO4 without and with the inhibitor at 2 g/l was studied in the temperature range from 303 and 343 K. The adsorption of inhibitor on the C38 steel surface was found to be a spontaneous process and to obey Langmuir’s adsorption isotherm. The associated activation energy has been determined.  相似文献   

10.
A nafion covered carbon nanotubes-paste electrode modified with poly(m-ferrocenylaniline), (Nf/p(FcAni)-CNTsPE), provides a novel voltammetric sensor for the selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). We studied the electrochemical activity of Nf/p(FcAni)-CNTsPE toward DA, UA, and AA by differential pulse voltammetry (DPV). DA and UA anodic peaks appear at 0.30 and 0.45 V, respectively while an anodic peak for AA was not observed. DPV oxidation peak values are linearly dependent on DA concentration over the range 1–150 μM (r2 = 0.992), and on UA concentration over the range 5–250 μM (r2 = 0.997). DA and UA detection limits are estimated to be 0.21 and 0.58 μM, respectively. The modified electrode shows both good selectivity and reproducibility for the selective determination of DA and UA in real samples. Finally, the modified electrode was successfully applied for the determination of DA and UA in pharmaceutical or biological sample fluids.  相似文献   

11.
Xanthine oxidase (XOD) inhibition has long been considered an effective anti-hyperuricemia strategy. To identify effective natural XOD inhibitors with little side effects, we performed a XOD inhibitory assay-coupled isolation of compounds from Smilacis Glabrae Rhizoma (SGR), a traditional Chinese medicine frequently prescribed as anti-hyperuricemia agent for centuries. Through the in vitro XOD inhibitory assay, we obtained a novel XOD inhibitor, 5-O-caffeoylshikimic acid (#1, 5OCSA) with IC50 of 13.96 μM, as well as two known XOD inhibitors, quercetin (#3) and astilbin (#6). Meanwhile, we performed in silico molecular docking and found 5OCSA could interact with the active sites of XOD (PDB ID: 3NVY) with a binding energy of −8.6 kcal/mol, suggesting 5OCSA inhibits XOD by binding with its active site. To evaluate the in vivo effects on XOD, we generated a hyperuricemia mice model by intraperitoneal injection of potassium oxonate (300 mg/kg) and oral gavage of hypoxanthine (500 mg/kg) for 7 days. 5OCSA could inhibit both hepatic and serum XOD in vivo, together with an improvement of histological and multiple serological parameters in kidney injury and HUA. Collectively, our results suggested that 5OCSA may be developed into a safe and effective XOD inhibitor based on in vitro, in silico and in vivo evidence.  相似文献   

12.
Sami El Deeb 《Chromatographia》2010,71(9-10):783-787
An LC method was developed and validated for the enantioselective separation and enantiomeric impurity quantitation of atenolol. Separation of the atenolol enantiomers on the Chirobiotic V2 (150 mm × 4.6 mm, 5 μm) column was best achieved using a ternary mobile phase of methanol–acetonitrile-triethylamine acetate 0.5% (w/v), pH 4.5 in a ratio of (45:50:5; v/v/v). Good resolution value of R s  = 3 was obtained at a flow rate of 1 mL min?1 within a total run time of less than 40 min. Peak identification was achieved using the standard reference of individual enantiomers. The peak of the impurity was eluted in front of the peak of the main enantiomer. Detection was performed by UV at 226 nm. Within and between day’s repeatabilities for both retention time and peak area were investigated at three concentration levels and found to be low. The method was also found to be efficient for the determination of atenolol enantiomeric impurity. An impurity quantitation level of (R)-atenolol down to 0.08% relative to the main enantiomer (S)-atenolol was found possible.  相似文献   

13.
In a previous report, it was shown that the trans-isomers of the 2′–3′ double bond on the side chain of vitamin K1 (phylloquinone) represented 88.65 % of a specific sample, while the cis-isomer represented 11.35 %. However, the side chain contains 2 chiral centers, indicating there are 8 possible stereoisomers. Seven of these 8 stereoisomers were partially resolved in 20 min, on a RegisPack 4.6 × 250 mm, 5 μm column, using 5 % methanol in CO2, at 2 mL/min, 30 °C, 150 bar. This is the first reported separation of these enantiomers by supercritical fluid chromatography, and, apparently, the first separation, by any technique, on a widely available commercial chiral stationary phase. The chiral separation produced one dominant peak, accounting for approximately 58 % of the total area, most likely due to 2′,3′-trans-4R,11R-philloquinone. Three other peaks each accounted for 9.7, 13.4, and 10.3 % of the total area, for a total of an additional ±33.4 %. These 4 peaks account for ≈91.4 % of the total area, in near agreement with the achiral findings for the separation of the trans-isomers. Three smaller, broad, poorly quantified peaks, collectively accounted for 8.1 % of the total area. Mass balance suggests these 3 small peaks are all cis-enantiomers, leaving approximately 3.2 % of the total area, representing the 4th cis-enantiomer, unaccounted for, and likely a co-elution with one of the 4 larger peaks.  相似文献   

14.
A cyclodextrin-modified microemulsion electrokinetic chromatography method employing head column field-amplified sample stacking was developed for the analysis of arachidonic acid metabolites of the lipoxygenase pathways. The influence of the concentration of boric acid, the surfactant sodium dodecyl sulfate, the co-surfactant 1-butanol and the oil phase octane as well as the pH of the background electrolyte, the separation voltage and the separation temperature was studied. The optimized microemulsion consisting of 20 mM boric acid buffer, pH 9.0, 3.0 % (m/v) sodium dodecyl sulfate, 0.5 % (v/v) octane, 5.0 % (v/v) 1-butanol and 15 mM α-cyclodextrin enabled the separation of 20-hydroxy-leukotriene B4, leukotriene B4, 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 12(S)-hydroxy-5,8,14-cis-10-trans-eicosatetraenoic acid, 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid as well as the internal standard prostaglandin B1 in <10 min employing a separation voltage of 17.5 kV at a temperature of 23 °C. A matrix peak from solid-phase extraction sample workup co-migrated with 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid affecting peak integration. The addition of 5 % (v/v) 2-propanol to the microemulsion resulted in the separation of this eicosatetraenoic acid and the matrix components at the expense of analysis time and peak resolution between the diastereomers 6-trans-leukotriene B4 and 6-trans-12-epi-leukotriene B4. In summary, the MEEKC method appeared to be especially suitable for the more polar arachidonic acid metabolites.  相似文献   

15.
A simple and reliable liquid chromatographic method has been developed and validated for the determination of cefdinir in human urine and capsule samples. A chromatographic separation was achieved on a C18 column using a mobile phase consisting of potassium dihydrogen phosphate (10 mM, pH 4.5)–acetonitrile (90:10, v/v). Quantitation was achieved with UV detection at 285 nm, based on peak area with linear calibration curve at a concentration range of 0.7–39 µg mL?1. This method was successfully applied for the establishment of an urinary excretion pattern after oral dose.  相似文献   

16.
In this study, a polydopamine (PDA)-modified hollow fiber-immobilized xanthine oxidase (XOD) was prepared for screening potential XOD inhibitors from flavonoids. Several parameters for the preparation of PDA-modified hollow fiber-immobilized XOD, including the dopamine concentration, modification time, XOD concentration and immobilization time, were optimized. The results show that the optimal conditions for immobilized XOD activity were a dopamine concentration of 2.0 mg/mL in 10.0 mM Tris-HCl buffer (pH 8.5), a modification time of 3.0 h, an XOD concentration of 1000 μg/mL in 10.0 mM phosphate buffer (pH 7.5) and an immobilization time of 3.0 h. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were investigated, and the enzyme kinetics and inhibition parameters were determined. The results indicate that the optimal pH value (7.5) and temperature (37 °C) of the PDA-modified hollow fiber-immobilized XOD were consistent with the free enzyme. Moreover, the PDA-modified hollow fiber-immobilized XOD could still maintain above 50% of its initial immobilized enzyme activity after seven consecutive cycles. The Michaelis–Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of allopurinol on the immobilized XOD were determined as 0.25 mM and 23.2 μM, respectively. Furthermore, the PDA-modified hollow fiber-immobilized XOD was successfully applied to evaluate the inhibitory activity of eight flavonoids. Quercetin, apigenin, puerarin and epigallocatechin showed a good inhibition effect, and their percentages of inhibition were (79.86 ± 3.50)%, (80.98 ± 0.64)%, (61.15 ± 6.26)% and (54.92 ± 0.41)%, respectively. Finally, molecular docking analysis further verified that these four active compounds could bind to the amino acid residues in the XOD active site. In summary, the PDA-modified hollow fiber-immobilized XOD is an efficient method for the primary screening of XOD inhibitors from natural products.  相似文献   

17.
《Analytical letters》2012,45(16):2618-2630
A carbon paste electrode (CPE), modified with novel hydroquinone/TiO2 nanoparticles, was designed and used for simultaneous determination of ascorbic acid (AA), uric acid (UA) and folic acid (FA). The magnitude of the peak current for modified TiO2-nanoparticle CPE (MTNCPE) increased sharply in the presence of ascorbic acid and was proportional to its concentration. A dynamic range of 1.0–1400.0 μM, with the detection limit of 6.4 × 10?7 M for AA, was obtained using the DPV technique (pH = 7.0). The prepared electrode was successfully applied for the determination of AA, UA, and FA in real samples.  相似文献   

18.
This work reports results from potentiodynamic polarisation and impedance investigation, with a rotating disc electrode, of inhibition of corrosion of A106 steel in aerated, unstirred 3.0 % NaCl solutions using di-n-butyl bis(thiophene-2-carboxylato-O,O′)tin(IV) as inhibitor. These studies showed that it is a mixed-type inhibitor. Inhibition efficiency increased with increasing di-n-butyl bis(thiophene-2-carboxylato-O,O′)tin(IV) concentration and decreases with increasing solution temperature. Maximum efficiency of inhibition of the inhibitor of approximately 78 % is observed at a concentration at 10?2 M. The inhibition process was attributed to formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. The adsorption isotherm confirms the applicability of Langmuir equation to describe the adsorption process. Thermodynamic functions for the adsorption process were determined. The efficiency of corrosion inhibitors and global chemical reactivity depend on such properties as energy of the highest occupied molecular orbital (E HOMO), energy of the lowest unoccupied molecular orbital (E LUMO), energy gap (ΔE), which were calculated. All calculation was been performed by density functional theory (DFT) using the Gaussian03W suite of software. Calculated results were usually in agreement with the experimental data.  相似文献   

19.
Metal–organic frameworks (MOFs) have received great attention as stationary phases in chromatographic separation technology because of their unusual properties such as high surface areas, fascinating structures, and excellent chemical and thermal stability. A chiral MOF, [(CH3)2NH2][Cd(bpdc)1.5]·2DMA, possesses a unique chiral nanotube motif built from the covalent linkage of homochiral nanotubes made up of octuple helices. Here, we report the fabrication of a three-dimensional (3D) chiral nanoporous MOF-coated capillary column (2 m long × 75 μm i.d.) for capillary gas chromatographic separation of racemates, Grob’s test mixture, normal alkanes, normal alcohols, and isomers. The MOF-coated capillary column offered good separation efficiency (2,180 plates m?1), which was measured using n-dodecane as the analyte at 120 °C. The relative standard deviations of repeatability for citronellal on MOF-coated capillary column were 0.23 and 2.1 % for retention time and peak area, respectively. The results demonstrated that the capillary column exhibited excellent selectivity and separation ability toward Grob’s test mixture, normal alkanes, normal alcohols and isomers, especially for racemates.  相似文献   

20.
A simple, sensitive, and selective liquid chromatography/tandem mass spectrometry method was validated for the identification and quantification of mavoglurant (AFQ056) in human plasma. The chromatographic separation was performed using a Cosmosil 5 C18 (150?×?4.6 mm, 5 μm) column at 40?±?0.5 °C with a mobile phase consisting of acetic acid in water (0.1 %, v/v)/methanol (10:90, v/v) with a flow rate of 1.0 mL/min followed by quantification with tandem mass spectrometry, operating with electrospray ionization in positive ion mode and applying multiple reaction monitoring. The validated method described in this paper presents high absolute recovery with precision and accuracy meeting the acceptance criteria. The method was precise and accurate for 2- and 10-fold dilution of samples. The method was validated using sodium heparin as specific anticoagulant, and the anticoagulant effect was tested by lithium heparin and K3EDTA. The method was successfully cross-validated between two bioanalytical sites. The method was specific for mavoglurant within the given criteria for acceptance (apparent peak area at the retention time of mavoglurant in zero samples was less than 20 % compared with the mean peak area at LLOQ) in human plasma. The method was fully validated for the quantitative determination of mavoglurant in human plasma between the range of 2.00 and 2,500 ng/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号