首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

2.
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of acridine red followed by drop-coating of graphene. The morphology was characterized by scanning electron microscopy. Uric acid (UA) is effectively accumulated on the surface of the modified electrode and generates a sensitive anodic peak in solutions of pH 6.5. Differential pulse voltammetry was used to evaluate the electrochemical response of the modified GCE to UA. Compared to the bare GCE, the GCE modified with acridine red, and to the graphene modified electrode, the new GCE displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of UA in the range from 0.8 to 150?μM, with a detection limit of 0.3?μM (at an S/N of 3). The modified electrode displays excellent selectivity, sensitivity, and a wide linear range. It has been applied to the determination of UA in real samples with satisfactory results.
Figure
The surface of a glassy carbon electrode was modified by electropolymerization of acridine red onto its surface and then covering it with graphene dropped. The graphene-poly(acridine red) modified electrode displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of uric acid in a certain range.  相似文献   

3.
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs) via continuous cycling between 0 and 0.9 V (vs. SCE). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V. The apparent surface coverage of the electrode is at least 24 times higher (2.7?×?10?10 mol cm?2) than that obtained with a bare GCE (1.1?×?10?11 mol cm?2). This is attributed to a remarkably strong synergistic effect between the acid-pretreated SWCNTs and the electrodeposited PCV coating. Response is fast (2 s) and sensitive (281 mA M?1 cm?2). Other features include a wide linear range (150 nM to 0.4 mM) and a low detection limit (150 nM at an SNR of 3). The sensor has been successfully applied to the determination of hydrazine in water and cigarette samples with good accuracy and precision. In addition, the morphology and the wetting properties of the coating were studied by scanning electromicroscopy and contact angle measurements.
Figure
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V with fast response, wide linear range and a low detection limit.  相似文献   

4.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

5.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

6.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

7.
We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0.8?V to +1.3?V in buffer solution to produce a hybrid film electrode (nano-ZrO2/PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO2/PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224?mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1.0 – 100.0?μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0.03 to 1.0?mM, and from 1.0 to 12.0?mM.
Figure
Figure A ZrO2 nanotubes/poly(acid fuchsin) hybrid film modified glassy carbon electrode was electrochemically fabricated. The oxidation overpotential of NADH at the developed nano-ZrO2/PAF/GCE was negatively shifed and the oxidation current was significantly increased. The nano-ZrO2/PAF/GCE was successfully applied to determine NADH and ethanol.  相似文献   

8.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

9.
Platinum nanoparticles were electrodeposited onto a film of dihexadecyl hydrogen phosphate deposited on a glassy carbon electrode (GCE) and modified with dispersed acetylene black. Scanning electron microscopy and electrochemical impedance spectroscopy revealed that this nanocomposite has a uniform nanostructure and a large surface area that enables fast electron-transfer kinetics. The modified GCE showed high electrocatalytic activity for the oxidation of nitric oxide (NO). Under optimal conditions, the oxidation peak current of nitric oxide is linearly related to the concentration of NO in the concentration range between 0.18 and 120?μM, and the detection limit is as low as 50?nM (at an S/N of 3). The modified electrode was successfully applied to sensing of NO as released from rat liver.
Figure
Acetylene black (AB) was dispersed with dihexadecyl hydrogen phosphate (DHP) and modified on the surface of glassy carbon electrode (GCE) to fabricate AB/GCE, after activating in NaOH solution, the AB film became more porous and loosened, then through electrodepositing Pt nanoparticles (PtNPs) on the activated AB film, PtNP/AB/GCE was obtained, which was denoted as NO electrochemical sensor.  相似文献   

10.
Qi Wang  Yanbin Yun 《Mikrochimica acta》2012,177(3-4):411-418
We have investigated the oxidative electrochemistry of nitrite on glassy carbon electrodes modified with cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) (PEDOT), and graphene. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The results suggest that this new type of electrode combines the advantages of PEDOT-graphene films and cobalt nanoparticles and exhibits excellent electrocatalytic activity towards the oxidation of nitrite. There is a linear relationship between the peak current and the nitrite concentration in the range from 0.5?μM to 240?μM, and the detection limit is 0.15?μM. The modified electrodes also enable the determination of nitrite at low potentials where the noise level and interferences by other electro-oxidizable compounds are weak.
Figure
The present work describes the design of a Co NPs-PEDOT-GE nanocomposite- modified GCE and its electrocatalytic properties toward the oxidation of nitrite. Compared with the Co NPs-GE/GCE (b) or PEDOT-GE/GCE (c), the as-prepared Co NPs-PEDOT-GE/GCE (d) exhibits remarkably enhanced electrocatalytic activity towards nitrite  相似文献   

11.
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode (GCE). The substrate was characterized by scanning electron microscopy (SEM), X-ray diffraction, cyclic voltammetry and amperometry. SEM micrographs indicated an uniform coverage of the carbon nanotubes with nanosized (poly)crystalline gold. Cyclic voltammetry reveals that peak separation of the unmodified GCE in the presence of 1?mM ferricyanide is 131?mV, but 60?mV only for the modified GCE. In addition, the oxidation of NADH (1?mmol?L?1 solution) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV. The effect of pH on the electrocatalytic activity was studied in the range from 5.4 to 8.0. The relationship between the anodic peak potential and the pH indicated a variation of ?33.5?mV/pH which is in agreement with a two-electron and one-proton reaction mechanism. Amperometry, performed at either ?50 or +50?mV vs. an Ag/AgCl reference electrode, indicates that the modified electrode is a viable amperometric sensor for NADH. At a working potential of +50?mV, the response to NADH is linear in the concentration range from 1 to 100???mol?L?1, with an RSD of 6% (n?=?4).
Figure
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode. The oxidation of NADH (1?mmol?L?1) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV.  相似文献   

12.
A thin film of poly(eriochrome black T) was deposited on the surface of glassy carbon electrode by cyclic voltammetry, and this system is shown to enable the sensitive determination of adenine (A) and guanine (G). Scanning electron microscopy, Fourier transform infrared spectroscopy and electrochemical impedance spectroscopy were carried out to characterize the film which exhibits excellent electrocatalytic activity toward the oxidation of A and G in 0.1 M phosphate buffer solution (pH 4.0). Square wave voltammetry reveals an oxidation peak at 1084 mV whose current is linearly related to the concentration of A in the range from 0.05 to 1.00 μM. The oxidation peak for G occurs at 788 mV, and its current is linearly related to the concentration of G in the range from 0.025 to 1.00 μM. The detection limits are 0.017 μM for A and 0.008 μM for G (at S/N?=?3), respectively. The modified electrode displays good reproducibility and selectivity for the determination of A and G. The sensor was applied to quantify A and G in fish sperm DNA with satisfactory results.
Figure
Square wave voltammograms of bare GCE (a), PEBT/GCE (b) in the presence of 1.00 μM adenine (A) and 1.00 μM guanine (G).  相似文献   

13.
We have developed a sensor for the square wave anodic stripping voltammetric determination of Pb(II). A glassy carbon electrode was modified with a thin film of an antimony/poly(p-aminobenzene sulfonic acid) composite in air-saturated aqueous solution of pH 2.0. Compared to a conventional antimony film electrode, the new one yields a larger stripping signal for Pb(II). The conditions of polymerization, the concentration of Sb(III), the pH value of the sample solution, the deposition potential and time, frequency, potential amplitude, and step increment potential were optimized. Under the optimum conditions, a linear response was observed for Pb(II) in the range of 0.5 to 150.0 μg?L?1. The detection limit for Pb(II) is 0.1 μg?L?1.
Figure
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and the modified electrode was then prepared by in situ depositing antimony and target metal on the poly(p-ABSA) coated glassy carbon electrode. The antimony/poly(p-ABSA) film electrode displays high electrochemical activity in giving a peak current that is proportional to the concentration of Pb(II) in a certain range.  相似文献   

14.
We report on an electrode for the amperometric determination of lorazepam. A glassy carbon electrode was coated with a molecular imprint made by electropolymerization of ortho-phenylenediamine and filled with multiwalled carbon nanotubes and gold nanoparticles, which enhances the transmission of electrons. The sensor was studied with respect to its response to hexacyanoferrate (III) as a probe and by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The linear response range to Lorazepam is from 0.5 nM to 1.0 nM and from 1.0 nM to 10.0 nM, with a detection limit of 0.2 nM (at an S/N of 3). The electrode was successfully applied to determine Lorazepam in spiked human serum.
Figure 1
The preparation of schematic of the AuNP/MIP/f?MWCNT/GCE electrode  相似文献   

15.
We report on the electrodeposition of palladium nanomaterials in choline chloride–based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (<2 s), high sensitivity (74.9 μA m(mol L?1)?1?cm?2) and broad linearity in the range from 0.1 to 800 μmol L?1 with a detection limit of 0.03 μmol L?1 (S/N?=?3).
Figure
Scheme 1 illustrated the fabrication strategy of the PdNPs/GCE. The first step was the electrodeoposition of CoNPs on the bare GCE. The second step is consist of two processes: (1) A replacement reaction of CoNPs and Pd2+ was happened along with the formation of PdNPs. CoNPs on the electrode were translated into Co2+ and went into the solution. Pd2+ in the solution was translated into PdNPs and adhered to the GCE surface. (2) A certain voltages was applied, the unreacted Pd2+ was further electrochemical deposited on the formed PdNPs nucleus. This is the first attempt to joint chemical replacement action with template assisted electrodeposition.  相似文献   

16.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

17.
We have developed a stable and sensitive nonenzymatic glucose sensor by modifying a glassy carbon electrode (GCE) with a composite incorporating nickel(II) oxides and reduced graphene. The oxides were generated by directly electrodepositing nickel on the GCE with a graphene modifier using a multi-potential pulse process, and then oxidizing nickel to nickel(II) oxides by potential cycling. In comparison to the conventional nickel(II) oxides-modified GCE, this new nickel(II) oxides-graphene modified GCE (NiO-GR/GCE) has an about 1.5 times larger current response toward the nonenzymatic oxidation of glucose in alkaline media. The response to glucose is linear in the 20 μM to 4.5 mM concentration range. The limit of detection is 5 μM (at a S/N of 3), and the response time is very short (<3 s). Other beneficial features include selectivity, reproducibility and stability. A comparison was performed on the determination of glucose in commercial red wines by high-performance liquid chromatography (HPLC) and revealed the promising aspects of this sensor with respect to the determination of glucose in real samples.
Figure
A stable and sensitive nonenzymatic glucose sensor is developed by preparing the nickel(II) oxides-reduced graphene nanocomposite modified glassy carbon electrode (NiO-GR/GCE), and then used to detect the glucose contents in the commercial red wines. This NiO-GR/GCE also has a high selectivity  相似文献   

18.
We have synthesized a virtually monodisperse gold-graphene (Au-G) nanocomposite by a single-step chemical reduction method in aqueous dimethylformamide solution. The nanoparticles are homogenously distributed over graphene nanosheets. A glassy carbon electrode was modified with this nanocomposite and displayed high electrocatalytic activity and extraordinary electronic transport properties due to its large surface area. It enabled the simultaneous determination of hydroquinone (HQ) and catechol (CC) in acetate buffer solution of pH?4.5. Two pairs of well-defined, quasi-reversible redox peaks are obtained, one for HQ and its oxidized form, with a 43 mV separation of peak potentials (ΔEp), the other for CC and its oxidized form, with a ΔEp of 39 mV. Due to the large separation of oxidation peak potentials (102 mV), the concentrations of HQ and CC can be easily determined simultaneously. The oxidation peak currents for both HQ and CC increase linearly with the respective concentrations in the 1.0 μM to 0.1 mM concentration range, with the detection limits of 0.2 and 0.15 μM (S/N?=?3), respectively. The modified electrode was successfully applied to the simultaneous determination of HQ and CC in spiked tap water, demonstrating that the Au-G nanocomposite may act as a high-performance sensing material in the selective detection of some environmental pollutants.
Figure
Au-graphene (Au-G) nanocomposites were synthesized through a single-step chemical reduction method. Nearly monodispersed Au nanoparticles were uniformly distributed over the 2D graphene nanosheets without aggregation. The glassy carbon electrode modified with Au-G nanocomposites, Au-G/GCE, shows high resolution capability in simultaneous determination of hydroquinone (HQ) and catechol (CC) in acetate buffer solutions (HAc-NaAc, pH 4.5).  相似文献   

19.
This work described a novel sensor for detection of l -tryptophan (Trp) by electrodeposition of gold nanoparticles (AuNPs) onto the poly(alizarin red S) film pre-cast on a glassy carbon electrode (GCE). Alizarin red S (ARS) was deposited on the surface of the GCE by electropolymerization, and gold nanoparticles (AuNPs) were attached onto the poly(ARS) film by electrodeposition, forming an AuNPs–PARS nanocomposite film-modified GCE (AuNPs–PARS/GCE). Then electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were used to characterize modified electrodes. The Nyquist diagrams of EIS indicated that the PARS film and AuNPs were successfully immobilized on the surface of GCE, and the electron transfer resistance value of electrode changed efficiently. The SEM image showed that the immobilized AuNPs were spherical in shape. The AuNPs–PARS/GEC displayed excellent amperometric response for Trp. The amperometric responses have two linear ranges from 0.02 to 0.5 μM and 0.5 to 20.0 μM, with sensitivities of 1.63(±0.08) and 0.21(±0.01)?μAμM?1, respectively. Its detection limit was 6.7 nM at a signal-to-noise ratio of 3. The proposed method was applied to determine Trp.
Figure
The procedure of the L-tryptophan sensor preparation  相似文献   

20.
We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of ?0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N?=?3) and a repeatability of 3.4 % (n?=?5).
Figure
A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号