首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of chemical vapor deposition with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene as catalyst. The electrochemical responses of MWCNT-based films towards the ferrocyanide/ferricyanide, [Fe(CN)6]3?/4? redox couple were probed by means of cyclic voltammetry and electrochemical impedance spectroscopy at 25.0?±?0.5?°C. Both MWCNT-based films exhibit Nernstian response towards [Fe(CN)6]3?/4? with some slight kinetic differences. Namely, heterogeneous electron transfer rate constants lying in ranges of 2.69?×?10?2?C1.7?×?10?3 and 9.0?×?10?3?C2.6?×?10?3?cm·s?1 were obtained at v?=?0.05?V·s?1 for MWCNTACN and MWCNTBZ, respectively. The detection limit of MWCNTACN, estimated to be about 4.70?×?10?7?mol·L?1 at v?=?0.05?V·s?1, tends to become slightly poorer with the increase of the scan rate, namely at v?=?0.10?V·s?1 the detection limit of 1.70?×?10?6?mol·L?1 was determined. Slightly poorer response ability was exhibited by MWCNTBZ; specifically the detection limits of 1.57?×?10?6 and 4.35?×?10?6?mol·L?1 were determined at v?=?0.05 and v?=?0.10?V·s?1, respectively. The sensitivities of MWCNTACN and MWCNTBZ towards [Fe(CN)6]3?/4? were determined as 1.60?×?10?7 and 1.51?×?10?7?A·L·mol?1·cm?2, respectively. The excellent electrochemical performance of MWCNTACN is attributed to the presence of incorporated nitrogen in the nanotube??s structure.  相似文献   

2.
Poly(2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole) (PAPT) modified glassy carbon electrode (GCE) was fabricated and used for the simultaneous determinations of dopamine (DA), uric acid (UA) and nitrite (NO2 ?) in 0.1 mol?L?1 phosphate buffer solution (PBS, pH 5.0) by using cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The results showed that the PAPT modified GCE (PAPT/GCE) not only exhibited electrocatalytic activities towards the oxidation of DA, UA and NO2 ? but also could resolve the overlapped voltammetric signals of DA, UA and NO2 ? at bare GCE into three strong and well-defined oxidation peaks with enhanced current responses. The peak potential separations are 130 mV for DA–UA and 380 mV for UA–NO2 ? using DPV, which are large enough for the simultaneous determinations of DA, UA and NO2 ?. Under the optimal conditions, the anodic peak currents were correspondent linearly to the concentrations of DA, UA and NO2 ? in the ranges of 0.95–380 μmol?L?1, 2.0–1,000 μmol?L?1 and 2.0–1,200 μmol?L?1 for DA, UA and NO2 ?, respectively. The correlation coefficients were 0.9989, 0.9970 and 0.9968, and the detection limits were 0.2, 0.35 and 0.6 μmol?L?1 for DA, UA and NO2 ?, respectively. In 0.1 mol?L?1 PBS pH 5.0, the PAPT film exhibited good electrochemical activity, showing a surface-controlled electrode process with the apparent heterogeneous electron transfer rate constant (k s) of 25.9 s?1 and the charge–transfer coefficient (α) of 0.49, and thus displayed the features of an electrocatalyst. Due to its high sensitivity, good selectivity and stability, the modified electrode had been successfully applied to the determination of analytes in serum and urine samples.  相似文献   

3.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

4.
The Randles–Sev?ik relationship has been applied to evaluate atomic hydrogen diffusivity in massive LaNi5 intermetallic compound. The electrode was cathodically hydrogenated in 6 M KOH solution (22 °C), and then voltammetry measurements were carried out at various, very slow potential scan rates (υ?=?0.01–0.1 mV?·?s?1). At potentials more noble than the equilibrium potential of the H2O/H2 system, the anodic peaks were registered as a consequence of oxidation of hydrogen absorbed in cathodic range. The peak potentials linearly increase with the logarithm of the scan rate with a slope of 0.059 V. The slope testifies to a symmetric charge transfer process with symmetry factor α?=?½. The peak currents linearly increase with the square root of the potential scan rate, and the straight line runs through the origin of the coordinate system. The slope of the I a (peak) ?=?f(υ 1/2) straight line is a measure of the atomic hydrogen diffusion coefficient. Assuming the hydrogen concentration in the LaNi5 material after cathodic exposure to be C 0,H?=?0.071 mol?·?cm?3 (63 % of theoretical value), the hydrogen diffusion coefficient equals D H?=?2.0?·?10?9 cm2s?1. Extrapolation of rectilinear segments of potentiodynamic polarization curves with Tafel slopes of 0.12 V and linear polarization dependencies from voltammetry tests allowed the exchange current densities of the H2O/H2 system on the tested material to be determined. The exchange current densities on initially hydrogenated LaNi5 alloy are close to 1 mA?·?cm?2, irrespective of the electrode potential scan rate.  相似文献   

5.
The microstructural and electrochemical properties of rf-sputtered LiMn2O4 films were investigated as a function of post-deposition process. The degree of crystallization in the films gradually increased with the increase of annealing temperature (T a). The films annealed at T a?=?973 K exhibited characteristic peaks with predominant (111) orientation representing the cubic spinel structure of Fd3m symmetry. The estimated Mn–Mn and Mn–O distances obtained from the X-ray diffraction data were observed to be increased slightly with T a. Characteristic changes in surface morphological features were observed as a function of T a as evidenced from scanning electron microscopy. The estimated root mean square (RMS) roughness of the films increased from 97 to 161 nm with augmentation of T a. The electrochemical studies, viz. cyclic voltammetry (CV), specific discharge capacity and Li ion diffusion coefficient were carried out for annealed LiMn2O4 films in saturated aqueous electrolyte (Li2SO4) in the potential window of 0–1.2 V and correlated with surface morphology and grain size. The LiMn2O4 films annealed at T a?=?973 K exhibited better electrochemical performance and demonstrated a discharge capacity of about 53.5 μA h cm?2 μm?1 with diffusion coefficient of 1.2?×?10?13 cm2 s?1.  相似文献   

6.
The electrocatalytic mechanism of Cr(III) reduction in the presence of diethylenetriaminepentaacetic acid (DTPA) and nitrate ions is studied theoretically and experimentally by using stripping square-wave voltammetry (SWV). Experimental curves are in excellent agreement with theoretical profiles corresponding to a catalytic reaction of second kind. This type of mechanism is equivalent to a CE mechanism, where the chemical reaction produces the electroactive species. Accordingly, the reaction of Cr(III)–H2O–DTPA and \( {\mathrm{NO}}_3^{-} \) would produce the electroactive species Cr(III)–NO3–DTPA and this last species would release \( {\mathrm{NO}}_2^{-} \) to the solution during the electrochemical step. In this regard, the complex of Cr(III)–DTPA would work as the catalyzer that allows the reduction of \( {\mathrm{NO}}_3^{-} \) to \( {\mathrm{NO}}_2^{-} \). Furthermore, it was found that the electrochemical reaction is quite irreversible, with a constant of k s?=?9.4?×?10?5 cm s?1, while the constant for the chemical step has been estimated to be k chem?=?1.3?×?104 s?1. Considering that the equilibrium constant is K?=?0.01, it is possible to estimate the kinetic constants of the chemical reaction as k 1?=?1?×?102 s?1 and k ?1?=?1.29?×?104 s?1. These values of k 1 and k ?1 indicate that the exchange of water molecules by nitrate is fast and that the equilibrium favors the complex with water. Also, a value for the formal potential E°’?≈??1.1 V was obtained. The model used for simulating experimental curves does not consider the adsorption of reactants yet. Accordingly, weak adsorption of reagents should be expected.  相似文献   

7.
Metal tetra-amino phthalocyanine complexes (MTAPc; where M is Co or Mn) were immobilized on screen-printed gold electrodes pre-modified with monolayers of benzylamino groups. The functionalized electrodes were then activated using benzene-1,4-dicarbaldehyde as a linker before MTAPc complexes were immobilized. The surface coverages for the modified electrodes confirmed the perpendicular orientation of the MTAPcs. The apparent electron transfer constant (kapp) for the electrodes is 2.2?×?10?5 cm.s?1 for both CoTAPc and MnTAPc modified electrodes as calculated with data from impedance measurements. The kapp values for the bare and benzylamino modified electrodes were found to be 1.2?×?10?4 cm.s?1 and 4.9?×?10?6 cm.s?1, respectively. The electrocatalysis of the modified electrodes towards detection of H2O2 gave significant peak current densities and electrocatalytic potentials at ?0.28 V and ?0.31 V for the MnTAPc and CoTAPc modified electrodes, respectively.  相似文献   

8.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

9.
A novel and simple biosensor based on poly(indoleacetic acid) film-modified electrode (PIAA/CPE) was fabricated by electrochemical polymerization of indoleacetic acid on a carbon paste electrode (CPE) through cyclic voltammetry. The resulting electrode was characterized by scanning electron microscopy, and the electrochemical behaviors of dopamine (DA) and epinephrine (EP) at the electrode were studied. It was illustrated that PIAA/CPE had excellent electrochemical catalytic activities toward DA and EP. The anodic peak currents (I pa) were dramatically enhanced by about seven-fold for DA and ten times for EP at PIAA/CPE. Thus, the determinations of DA and EP were carried out using PIAA/CPE successfully. The linear responses were obtained in the range of 3.0?×?10?7~7.0?×?10?4 and 1.0?×?10?6 ~8.0?×?10?4 mol L?1 with the detection limits (3σ) of 1?×?10?7 and 4?×?10?7 mol L?1 corresponding with DA and EP, respectively. Moreover, the cathodic peaks of DA and EP were well-separated with a potential difference about 325 mV in pH 5.3 phosphate-buffered saline, so simultaneous determination of DA and EP was carried out in this paper. Additionally, the interference studies showed that the PIAA/CPE exhibited excellent selectivity in the presence of ascorbic acid (AA). With good selectivity and sensitivity, the present method has been successfully applied to the determination of DA and EP in pharmaceutical samples.  相似文献   

10.
In this study, direct electron transfer (ET) has been achieved between an immobilised non-symbiotic plant haemoglobin class II from Beta vulgaris (nsBvHb2) and three different screen-printed carbon electrodes based on graphite (SPCE), multi-walled carbon nanotubes (MWCNT-SPCE), and single-walled carbon nanotubes (SWCNT-SPCE) without the aid of any electron mediator. The nsBvHb2 modified electrodes were studied with cyclic voltammetry (CV) and also when placed in a wall-jet flow through cell for their electrocatalytic properties for reduction of H2O2. The immobilised nsBvHb2 displayed a couple of stable and well-defined redox peaks with a formal potential (E°′) of ?33.5 mV (vs. Ag|AgCl|3 M KCl) at pH 7.4. The ET rate constant of nsBvHb2, k s, was also determined at the surface of the three types of electrodes in phosphate buffer solution pH 7.4, and was found to be 0.50 s?1 on SPCE, 2.78 s?1 on MWCNT-SPCE and 4.06 s?1 on SWCNT-SPCE, respectively. The average surface coverage of electrochemically active nsBvHb2 immobilised on the SPCEs, MWCNT-SPCEs and SWCNT-SPCEs obtained was 2.85?×?10?10 mol cm?2, 4.13?×?10?10 mol cm?2 and 5.20?×?10?10 mol cm?2. During the experiments the immobilised nsBvHb2 was stable and kept its electrochemical and catalytic activities. The nsBvHb2 modified electrodes also displayed an excellent response to the reduction of hydrogen peroxide (H2O2) with a linear detection range from 1 μM to 1000 μM on the surface of SPCEs, from 0.5 μM to 1000 μM on MWCNT-SPCEs, and from 0.1 μM to 1000 μM on SWCNT-SPCEs. The lower limit of detection was 0.8 μM, 0.4 μM and 0.1 μM at 3σ at the SPCEs, the MWCNT-SPCEs, and the SWCNT-SPCEs, respectively, and the apparent Michaelis–Menten constant, $ {\hbox{K}}_{\rm{M}}^{\rm{app}} $ , for the H2O2 sensors was estimated to be 0.32 mM , 0.29 mM and 0.27 mM, respectively.  相似文献   

11.
The complexes formed between copper and thiram and between mercury and thiram have been electrochemically (voltammetrically) investigated in the present work. Their structure was confirmed using electrospray ionization mass spectrometry. Due to formation of the complex between copper (from copper solid amalgam electrode) and thiram, the concentration of this pesticide can be determined. The voltammetric behavior of thiram was investigated at polished (p-CuSAE) and mercury meniscus modified (m-CuSAE) copper solid amalgam electrodes (inner diameter 1.5 mm) by differential pulse voltammetry (DPV) and by direct current voltammetry (DCV). Optimum conditions for DPV determination of thiram were found in Britton–Robinson buffer. The reaction mechanism was investigated using DCV and elimination voltammetry with linear scan. DPV with optimized parameters was applied for determination of thiram in analyzed solutions. The limits of detection were calculated as 16 nmol?L?1 (t acc?=?100 s) for m-CuSAE and 23 nmol?L?1 (t acc?=?60 s) for p-CuSAE. The proposed method was successfully applied for thiram determination in real sample solutions.  相似文献   

12.
Glassy carbon electrode was modified by electropolymerization of 4-amino-3-hydroxynaphthalene sulfonic acid. Cyclic voltammetric study of quinine showed higher current response at the modified electrode compared to the bare and activated glassy carbon electrodes in pH 7.0 phosphate buffer solution. Under optimized conditions, a calibration curve was obtained by square wave voltammetry at the modified electrode. The linear relationship between the peak current and the concentration of quinine in the range of 1.0?×?10?7 to 1.0?×?10?5 M was I pa (in microamperes)?=?6.26C (in micromolars)?+?0.2997 (R 2?=?0.999). The detection limit calculated (S/N?=?3) was 1.42?×?10?8 M, which is much lower than similar reports. The method was successfully applied for the determination of quinine in spiked human urine, and pharmaceutical formulations and recovery values >90 % were obtained.  相似文献   

13.
The direct electron transfer of glucose oxidase (GOx) was achieved based on the immobilization of CdSe@CdS quantum dots on glassy carbon electrode by multi-wall carbon nanotubes (MWNTs)-chitosan (Chit) film. The immobilized GOx displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ’) of ?0.459 V (versus Ag/AgCl) in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) of GOx confined in MWNTs-Chit/CdSe@CdS membrane were evaluated as 1.56 s?1 according to Laviron's equation. The surface concentration (Γ*) of the electroactive GOx in the MWNTs-Chit film was estimated to be (6.52?±?0.01)?×?10?11?mol?cm?2. Meanwhile, the catalytic ability of GOx toward the oxidation of glucose was studied. Its apparent Michaelis–Menten constant for glucose was 0.46?±?0.01 mM, showing a good affinity. The linear range for glucose determination was from 1.6?×?10?4 to 5.6?×?10?3?M with a relatively high sensitivity of 31.13?±?0.02 μA?mM?1?cm?2 and a detection limit of 2.5?×?10?5?M (S/N=3).  相似文献   

14.
A novel poly(methylene blue)/graphene composite glassy carbon electrode was fabricated and the electrochemical behavior of maltol at the modified electrode was studied by cyclic voltammetry. In phosphate-buffered solution, the modified electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of maltol. Under optimized conditions, the oxidation peak current showed a linear relationship with the concentrations of maltol in the ranges of 8.00?×?10?7 to 4.00?×?10?5 and 4.00?×?10?5 to 5.40?×?10?4 mol L?1, with a detection limit of 6.50?×?10?8 mol L?1. The performance of the developed method was validated in terms of linearity (r?=?0.9981 and 0.9955), recovery (97.0?99.3 %), reproducibility (relative standard deviations?≤?3.1 %, n?=?6), and robustness. The method shows excellent sensitivity, selectivity, and reproducibility and has been successfully applied to analyzing maltol in a wide variety of food products.  相似文献   

15.
A polymerized film of Adizol Black B (ABB) on the surface of glassy carbon (GC) electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP), and uric acid (UA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of AA, EP, and UA by differential pulse voltammetry method. The oxidation peaks of the three compounds were well defined and had the enhanced peak currents. The separation of the oxidation peak potentials for AA–EP and EP–UA were about 180 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 2.0–1,970.0, 0.1–64.0, and 0.1–1,700.0 μmol L–1, respectively. The detection limits (S/N?=?3) were 0.01, 0.007, and 0.02 μmol L–1 for AA, EP, and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation reaction of EP at poly(ABB) film-coated GC electrode were calculated as 1.54(±0.10)?×?10?4 cm2 s?1 and 4.5?×?103 mol?1 L s?1, respectively. The present method was applied to the determination of EP in pharmaceutical, AA in commercially available vitamin C tablet, and UA in urine samples.  相似文献   

16.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

17.
A jet-stream kinetic technique and the resonance fluorescence method applied to detection of iodine atoms were used to measure the rate constants of the reactions of the IO· radical with the halohydrocarbons CHFCl-CF2Cl (k = (3.2 ± 0.9) × 10?16 cm3 molecule s?1) and CH2ClF (k = (9.4 ± 1.3) × 10?16 cm3 molecule s?1), the hydrogen-containing haloethers CF3-O-CH3 (k = (6.4 ± 0.9) × 10?16 cm3 molecule s?1) and CF3CH2-O-CHF2 (k = (1.2 ± 0.6) × 10?15 cm3 molecule s?1), and hydrogen iodide (k = (1.3 ± 0.9) × 10?12 cm3 molecule s?1) at 323 K.  相似文献   

18.
A new voltammetric sensor based on electropolymerization of glycine at glassy carbon electrode (GCE) was developed and applied to determine of pyrazinamide (PZA) by square-wave voltammetry (SWV). The initial cyclic voltammetric studies showed an electrocatalytic activity of poly(Gly)/GCE on redox system of pyrazinamide in 0.1 mol L?1 phosphate buffer solution pH 7.5, with E Pc and E Pa in ?0.85 and ?0.8 V (versus E Ag/AgCl), respectively. Studies at different scan rates suggest that the redox system of pyrazinamide at poly(Gly)/GCE is a process controlled by diffusion in the interval from 10 to 100 mV s?1. Square-wave voltammetry-optimized conditions showed a linear response of PZA concentrations in the range from 0.47 to 6.15 μmol L?1 (R?=?0.998) with a limit of detection (LOD) of 0.035 μmol L?1 and a limit of quantification (LOQ) of 0.12 μmol L?1. The developed SWV-poly(Gly)/GCE method provided a good intra-day (RSD?=?3.75 %) and inter-day repeatability (RSD?=?4.96 %) at 4.06 μmol L?1 PZA (n?=?10). No interference of matrix of real samples was observed in the voltammetric response of PZA, and the method was considered to be highly selective for the compound. In the accuracy test, the recovery was found in the range of 98.2 and 104.0 % for human urine samples and pharmaceutical formulation (tablets). The PZA quantification results in pharmaceutical tablets obtained by the proposed SWV-poly(Gly)/GCE method were comparable to those found by official analytical protocols.  相似文献   

19.
Phytic acid (PA) with its unique structure was attached to a glassy carbon electrode (GCE) to form PA/GCE modified electrode which was characterized by electrochemical impedance. The electrochemical behavior of cytochrome c (Cyt c) on the PA/GCE modified electrode was explored by cyclic voltammetry and differential pulse voltammetry. The Cyt c displayed a quasi-reversible redox process on PA modified electrode pH 7.0 phosphate buffer solution with a formal potential (E 0′) of 57 mV (versus Ag/AgCl). The peak currents were linearly related to the square root of the scan rate in the range of 20–120 mV·s?1. The electron transfer rate constant was determined to be 12.5 s?1. The PA/GCE modified electrode was applied to the determination of Cyt c, in the range of 5?×?10?6 to 3?×?10?4 M, the currents increase linearly to the Cyt c concentration with a correlation coefficient 0.9981. The detection limit was 1?×?10?6 M (signal/noise?=?3).  相似文献   

20.
In this study, an oxadiazole multi-wall carbon nanotube-modified glassy carbon electrode (OMWCNT?GCE) was used as a highly sensitive electrochemical sensor for hydrazine determination. The surface charge transfer rate constant, k s, and the charge transfer coefficient, ??, for electron transfer between GCE and electrodeposited oxadiazole were calculated as 19.4?±?0.5?s?1 and 0.51, respectively at pH?=?7.0. The obtained results indicate that hydrazine peak potential at OMWCNT?GCE shifted for 14, 109, and 136?mV to negative values as compared with oxadiazole-modified GCE, MWCNT?GCE, and activated GCE surface, respectively. The electron transfer coefficient, ??, and the heterogeneous rate constant, k??, for the oxidation of hydrazine at OMWCNT?GCE were also determined by cyclic voltammetry measurements. Two linear dynamic ranges of 0.6 to 10.0???M and 10.0 to 400.0???M and detection limit of 0.17???M for hydrazine determination were evaluated using differential pulse voltammetry. In addition, OMWCNT?GCE was shown to be successfully applied to determine hydrazine in various water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号