首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Several important photophysical properties of the cyanine dye Cy3 have been determined by laser flash photolysis. The triplet-state absorption and photoisomerization of Cy3 are distinguished by using the heavy-atom effects and oxygen-induced triplet --> triplet energy transfer. Furthermore, the triplet-state extinction coefficient and quantum yield of Cy3 are also measured via triplet-triplet energy-transfer method and comparative actinometry, respectively. It is found that the triplet --> triplet (T1-->Tn) absorptions of trans-Cy3 largely overlap the ground-state absorption of cis-Cy3. Unlike what occurred in Cy5, we have not observed the triplet-state T1-->Tn absorption of cis-Cy3 and the phosphorescence from triplet state of cis-Cy3 following a singlet excitation (S0-S1) of trans-Cy3, indicating the absence of a lowest cis-triplet state as an isomerization intermediate upon excitation in Cy3. The detailed spectra of Cy3 reported in this paper could help us interpret the complicated photophysics of cyanine dyes.  相似文献   

2.
The intersystem crossing and isomerization dynamics of free-Cy3, Cy3-ssDNA, free-Cy5 and Cy5-ssDNA are obtained through simple analysis of rapid on/off blinking from single molecule fluorescence intensity time-traces and the fluorescence correlation spectroscopy (FCS). The on- and off-times observed in fluorescence time traces of single cyanine dyes are due to the formation of the triplet state and isomerization, where both the interaction with DNA and long central polymethine chain of cyanine dyes increase the barriers of isomerization, leading to long off-time. The results indicate that the single molecule fluorescence fluctuation together with the resulting second autocorrelation analysis are powerful methods for determining the triplet state and isomerization dynamics, which could be the simple techniques and complementary to other spectroscopic techniques, such as fluorescence decay measurement and laser flash photolysis to study the photophysical processes of complex molecules. Supported by the National Natural Science Foundation of China (Grant Nos. 20773139, 20833008 & 20825314), and State Key Project for Fundamental Research (Grant Nos. 2006CB806000 & 2007CB815200)  相似文献   

3.
We have studied a donor-acceptor fluorophore-labeled DNA switch where the acceptor is Alexa-647, a carbocyanine dye, in solution at the single molecule level to elucidate the fluorescence switching mechanism. The acceptor, which is in an initial high fluorescence trans state, undergoes a photoisomerization reaction resulting in two additional states during its sub-millisecond transit across the probe volume. These two states are assigned to a nonfluorescent triplet trans state that strongly quenches the donor emission and a singlet cis state that blocks the fluorescence resonance energy transfer (FRET) pathway and gives rise to donor-only fluorescence. The formation of these states is faster than the transit time, so that all three states are approximately equally populated under our experimental conditions. The acceptor dye can stick to the DNA in all these states, with the rate of unsticking determining the rate of isomerization into the other states. Measurement of the rate of change of the FRET signal therefore provides information about the fluorophore-DNA intramolecular dynamics. These results explain the large zero peak in the proximity ratio, often seen in single molecule FRET experiments, and suggest that photoinduced effects may be important in single molecule FRET experiments using carbocyanine dyes. They also suggest that for fast photoinduced switching the interactions of the acceptor dye with the DNA and other surfaces should be prevented.  相似文献   

4.
trans-Urocanic acid (trans-UA), a component of the epidermal layer of skin, exhibits wavelength-dependent photochemistry. The quantum efficiency of isomerization to cis-UA is greatest when the molecule is excited on the long wavelength tail of its absorption profile in solution (300-320 nm). However, exciting the molecule where it absorbs UV light most efficiently (260-285 nm) causes almost no isomerization. We have used fluorescence excitation and dispersed emission methods in a supersonic jet to investigate the electronic states involved in this complex and interesting photochemistry. Three distinct regions are present in the excitation spectrum. Region I, which is below the isomerization barrier, contains sharp, well-resolved peaks that upon excitation emit from the S(1) state of trans-UA. Region II exhibits peaks that increase in broadness and decrease in intensity with increasing excitation energy. Upon excitation these peaks produce dual emission from the S(1) states of both trans- and cis-UA. The trans to cis isomerization barrier is estimated to be 1400 cm(-1). Region III exhibits excitation to the S(2) electronic state and has a broad structure that spans 3000 cm(-1) and occurs 4000 cm(-1) above S(1). S(2) excitation results in essentially no trans to cis isomerization.  相似文献   

5.
trans- and cis-1-(4-Dimethylaminophenyl)-6-(4-nitrophenyl)hex-3-ene-1,5-diynes (trans- and cis-DANE) were synthesized and their photochemical properties were studied. The absorption spectra of trans-DANE red-shifted compared with the parent compound bisphenylethynylethene (BEE) due to intramolecular charge transfer. The fluorescence spectra, Stokes shift, fluorescence lifetime, fluorescence quantum yield, and quantum yield of trans-to-cis photoisomerization of trans-DANE showed strong dependence upon the solvent polarity in the less-polar region. No fluorescence emission from trans-DANE was observed in medium-polar and polar solvents. The quantum yield of cis-to-trans isomerization was almost solvent independent. The donor-acceptor substituents shifted the equilibrium between the trans perpendicular triplet state and the trans planar triplet state to the trans triplet state, and resulted in an increase in the triplet lifetime. Comparison of the photochemical properties of trans-DANE with trans-4-dimethylamino-4'-nitrostilbene (DANS) suggests that trans-DANE is a possible fluorescent probe in the non-polar region.  相似文献   

6.
We demonstrate that commercially available unmodified carbocyanine dyes such as Cy5 (usually excited at 633 nm) can be used as efficient reversible single-molecule optical switch, whose fluorescent state after apparent photobleaching can be restored at room temperature upon irradiation at shorter wavelengths. Ensemble photobleaching and recovery experiments of Cy5 in aqueous solution irradiating first at 633 nm, then at 337, 488, or 532 nm, demonstrate that restoration of absorption and fluorescence strongly depends on efficient oxygen removal and the addition of the triplet quencher beta-mercaptoethylamine. Single-molecule fluorescence experiments show that individual immobilized Cy5 molecules can be switched optically in milliseconds by applying alternating excitation at 633 and 488 nm between a fluorescent and nonfluorescent state up to 100 times with a reliability of >90% at room temperature. Because of their intriguing performance, carbocyanine dyes volunteer as a simple alternative for ultrahigh-density optical data storage. Measurements on single donor/acceptor (tetramethylrhodamine/Cy5) labeled oligonucleotides point out that the described light-driven switching behavior imposes fundamental limitations on the use of carbocyanine dyes as energy transfer acceptors for the study of biological processes.  相似文献   

7.
Organic molecules possessing intramolecular charge-transfer properties (D-pi-A type molecules) are of key interest particularly in the development of new optoelectronic materials as well as photoinduced magnetism. One such class of D-pi-A molecules that is of particular interest contains photoswitchable intramolecular charge-transfer states via a photoisomerizable pi-system linking the donor and acceptor groups. Here we report the photophysical and electronic properties of the trans to cis isomerization of 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene ligand (mepepy) in aqueous solution using photoacoustic calorimetry (PAC) and theoretical methods. Density functional theory (DFT) calculations demonstrate a global energy difference between cis and trans isomers of mepepy to be 8 kcal mol(-1), while a slightly lower energy is observed between the local minima for the trans and cis isomers (7 kcal mol(-1)). Interestingly, the trans isomer appears to exhibit two ground-state minima separated by an energy barrier of approximately 9 kcal mol(-1). Results from the PAC studies indicate that the trans to cis isomerization results in a negligible volume change (0.9 +/- 0.4 mL mol(-1)) and an enthalpy change of 18 +/- 3 kcal mol(-1). The fact that the acoustic waves associated with the trans to cis transition of mepepy overlap in frequency with those of a calorimetric reference implies that the conformational transition occurs faster than the approximately 50 ns response time of the acoustic detector. Comparison of the experimental results with theoretical studies provide evidence for a mechanism in which the trans to cis isomerization of mepepy results in the loss of a hydrogen bond between a water molecule and the pyridine ring of mepepy.  相似文献   

8.
Electrochemiluminescence resonance energy transfer (ECRET) between CdSe/Zns quantum dots (QDs) as the donor and cyanine dye (Cy5) molecules as the acceptor in QD-Cy5 conjugates with DNA or protein as the linker was reported. When a negative potential was applied, the excited-state CdSe/ZnS* was produced in 0.1 mol/L phosphate buffer (pH 7.4) containing 0.1 mol/L K2S2O8 and 0.1 mol/L KNO3 (PB-K2S2O8). The CdSe/ZnS* went back to the ground-state CdSe/ZnS to emit light at 590 nm or to transfer energy to proximal ground-state Cy5 molecules. The resultant excited-state Cy5 molecules relaxed to their ground state by emitting a light at 675 nm. The ECRET between QDs and Cy5 was used to evaluate interactions between DNAs and to measure conformational changes of DNAs and proteins.  相似文献   

9.
Ab initio molecular orbital calculations at the G2(MP2) level have been carried out on cyclopropylsilylene C3H5SiH. Four equilibrium structures were located. Like H2Si, the ground state of C3H5SiH is singlet and the triplet is the low‐lying excited state. The singlet–triplet separation energy is 127.9 kJ/mol. The cis‐trans isomerization path of singlet cyclopropylsilylene was investigated by intrinsic reaction coordinate (IRC) calculations. The calculations show that no gauche conformers exist along the potential energy curve of the cis‐trans isomerization and the isomerization happens with a barrier of 30.1 kJ/mol. Changes (ΔH and ΔG) in thermodynamic functions, equilibrium constant K(T), and A factor and reaction rate constant k(T) in Eyring transition state theory of the cis‐trans isomerization were also calculated. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

10.
Atomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilization of the chromophore's excited state by the guanidium group of Arg52, located just above the negatively charged chromophore ring. In vacuo isomerization does not occur. Isomerization of the double bond is enhanced relative to isomerization of a single bond due to the steric interactions between the phenyl ring of the chromophore and the side chains of Arg52 and Phe62. In the isomerized configuration (ground-state cis), a proton transfer from Glu46 to the chromophore is far more probable than in the initial configuration (ground-state trans). It is this proton transfer that initiates the conformational changes within the protein, which are believed to lead to signaling.  相似文献   

11.
The kinetics of the ruthenium-promoted cis,cis to trans,trans isomerization of 1,1,2,2,5,5,6,6-octamethyl-1,2,5,6-tetrasilacycloocta-3,7-diene were investigated. Incubation of a ruthenium alkylidene complex, (Cy(3)P)RuCl(2)(==CHPh)Ru(p-cymene)Cl(2), in CD(2)Cl(2) for 5 days at 40 degrees C afforded a catalytically active ruthenium species that was shown to be responsible for promoting the isomerization. The isomerization was observed to proceed in two steps: (1) conversion of the starting cis,cis isomer to a proposed cis,trans intermediate and (2) subsequent conversion of the intermediate to the product trans,trans isomer. Kinetic studies demonstrated that the two steps are first-order with respect to the concentrations of the cis,cis isomer, the intermediate, and the ruthenium alkylidene complex. The data were further consistent with a mechanism involving bimolecular hydride addition-elimination during the two isomerization steps.  相似文献   

12.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

13.
Thio amino acids can be integrated into the backbone of peptides without significantly perturbing their structure. In this contribution we use ultrafast infrared and visible spectroscopy as well as state-of-the-art ab initio computations to investigate the photoisomerization of the trans form of N-methylthioacetamide (NMTAA) as a model conformational photoswitch. Following the S2 excitation of trans-NMTAA in water, the return of the molecule into the trans ground state and the formation of the cis isomer is observed on a dual time scale, with a fast component of 8-9 ps and a slow time constant of approximately 250 ps. On both time scales the probability of isomerization to the cis form is found to be 30-40%, independently of excitation wavelength. Ab initio CASPT2//CASSCF photochemical reaction path calculations indicate that, in vacuo, the trans-->cis isomerization event takes place on the S1 and/or T1 triplet potential energy surfaces and is controlled by very small energy barriers, in agreement with the experimentally observed picosecond time scale. Furthermore, the calculations identify one S2/S1 and four nearly isoenergetic S1/S0 conical intersection decay channels. In line with the observed isomerization probability, only one of the S1/S0 conical intersections yields the cis conformation upon S1-->S0 decay. A substantially equivalent excited-state relaxation results from four T1/S0 intersystem crossing points.  相似文献   

14.
Abstract —The triplet states of the n -butyl-amine Schiff bases of 11- cis , 9- cis , 13- cis and all- trans retinal are produced via triplet-triplet energy transfer. Their absorption spectra, peaking around 435 nm, and their decay kinetics are recorded using pulsed-laser photolysis. Direct-excitation (φDISO) and triplet-sensitized (φTISO) photoisomerization yields, determined using steady irradiation methods, are found to be: φTISO (9- cis ) = 0.06, φTISO (11- cis ) = 045, φTISO (13- cis ) = 008, φTISO (all- trans ) = 0.02-0.05, φDISO (11- cis , = (4 ± 1) × 10-3, φDISO (all- trans ) = (2 ± 1) × 10-3. The possible role of the triplet state in the isomerization of rhodospin is discussed.  相似文献   

15.
Optimized and far-red-emitting variants of fluorescent protein eqFP611   总被引:2,自引:1,他引:1  
Fluorescent proteins (FPs) emitting in the far-red region of the spectrum are highly advantageous for whole-body imaging applications because scattering and absorption of long-wavelength light is markedly reduced in tissue. We characterized variants of the red fluorescent protein eqFP611 with bright fluorescence emission shifted up to 639 nm. The additional red shift is caused by a trans-cis isomerization of the chromophore. The equilibrium between the trans and cis conformations is strongly influenced by amino acid residues 143 and 158. Pseudo monomeric tags were obtained by further genetic engineering. For the red chromophores of eqFP611 variants, molar extinction coefficients of up to approximately 150,000 were determined by an approach that is not affected by the presence of molecules with nonfunctional red chromophores. The bright fluorescence makes the red-shifted eqFP611 variants promising lead structures for the development of near-infrared fluorescent markers. The red fluorescent proteins performed well in cell biological applications, including two-photon imaging.  相似文献   

16.
The light induced isomerization of thioindigo (I) and 6,6′-diethoxy-thioindigo(II) has been investigated by means of nanosecond flash photolysis and steady state methods. A mechanism is proposed in which a common triplet state generated from both the trans and cis isomers is responsible for the isomerization. Quantum yields at different oxygen concentrations  相似文献   

17.
Substituted naphthylacrylates, 1-3, not showing rotamerism have been synthesized with a view to study photochemical E (trans)-->Z (cis) isomerization. Photostationary state composition of the isomers upon direct excitation, triplet sensitized isomerization, quantum yield of isomerization, and steady state and time-resolved fluorescence behavior have been studied for these naphthylacrylates. The direct excitations of the compounds yield high Z (approximately 80%) isomer composition, whereas the triplet sensitization results in less Z (approximately 20%) isomer composition. This indicates that the singlet pathway is very efficient in converting the E isomer to the Z isomer. The naphthylacrylates 1 and 2 exhibit structured fluorescence at room temperature in hexane and upon changing the solvent to CH3CN; the structure of the fluorescence is lost, indicating that the singlet excited-state develops a polar character in a polar environment. The polar nature of the singlet excited state becomes more clear in the case of 3 from its fluorescence solvatochromism. The naphthylacrylates did not exhibit excitation wavelength-dependent fluorescence at room temperature suggesting that the ground state conformers (rotamers) are not involved. Fluorescence lifetimes measured for these compounds displayed biexponential behavior, which is explained using a two-state model.  相似文献   

18.
When a molecule is subjected to a short intense laser pulse, the ensuing dynamical processes depend qualitatively on the pulse parameters, including duration, frequency, and fluence. Here we report studies of cis to trans photoisomerization of azobenzene following femtosecond-scale laser pulses which are relatively short (10 fs) or long (100 fs) and which have a central frequency matched to either the first excited state (S1, or HOMO to LUMO in a molecular orbital picture) or the second (S2, or HOMO-1 to LUMO). The results presented here demonstrate that photoisomerization involves a rather intricate sequence of connected steps, with the nuclear and electronic degrees of freedom inextricably coupled. One important feature is the de-excitation required for the molecule to achieve its new ground-state after isomerization. If the primary excitation is to S1, then we find that only a single HOMO/LUMO avoided crossing is required and that this crossing occurs halfway along a rotational pathway involving the central CNNC dihedral angle. If the primary excitation is to S2, then the same HOMO/LUMO avoided crossing is observed, but it must be preceded by another avoided crossing that permits transfer of holes from the HOMO-1 to the HOMO, so that the HOMO is then able to accept electrons from the LUMO. We find that this earlier crossing can occur in either of two geometries, one near the cis configuration and the other near the trans. The fact that S2 (pi pi*) isomerization requires two steps may be related to the fact that isomerization yields are smaller for this (UV) excitation than for the S1 (n pi*, visible-light) excitation.  相似文献   

19.
The infrared and ultraviolet spectroscopy of o-, m-, and p-ethynylstyrene isomers (oES, mES, and pES) were studied by a combination of methods, including resonance-enhanced two-photon ionization (R2PI), UV-UV hole-burning spectroscopy (UVHB), resonant ion-dip infrared spectroscopy (RIDIRS), and rotationally resolved fluorescence excitation spectroscopy. In addition, the newly developed method of stimulated emission pumping-population transfer spectroscopy (SEP-PTS) was used to determine the energy threshold to conformational isomerization in m-ethynylstyrene. The S(1) <-- S(0) origin transitions of oES and pES occur at 32 369 and 33 407 cm(-1), respectively. In mES, the cis and trans conformations are calculated to be close in energy. In the R2PI spectrum of mES, the two most prominent peaks (32672 and 32926 cm(-1)) were confirmed by UVHB spectroscopy to be S(1) <-- S(0) origins of these two conformers. The red-shifted conformer was identified as the cis structure by least-squares fitting of the rotationally resolved fluorescence excitation spectrum of the origin band. There are also two possible conformations in oES, but transitions due to only one were observed experimentally, as confirmed by UVHB spectroscopy. Density functional theory calculations (B3LYP/6-31+G) predict that the cis-ortho conformer, in which the substituents point toward each other, is about 8 kJ/mol higher in energy than the trans-ortho isomer, and should only be about 5% of the room temperature population of oES. Ground-state infrared spectra in the C-H stretch region (3000-3300 cm(-1)) of each isomer were obtained with RIDIRS. In all three structural isomers, the acetylenic C-H stretch fundamental was split by Fermi resonance. Infrared spectra were also recorded in the excited electronic state, using a UV-IR-UV version of RIDIR spectroscopy. In all three isomers the acetylenic C-H stretch fundamental was unshifted from the ground state, but no Fermi resonance was seen. The first observed and last unobserved transitions in the SEP-PT spectrum were used to place lower and upper bounds on the barrier to cis --> trans isomerization in m-ethynylstyrene of 990-1070 cm(-1). Arguments are given for the lack of a kinetic shift in the measurement. The analogous trans --> cis barrier is in the same range (989-1065 cm(-1)), indicating that the relative energies of the zero-point levels of the two isomers are (E(ZPL)(cis) - E(ZPL)(trans))= -75 to +81 cm(-1). Both the barrier heights and relative energies of the minima are close to those determined by DFT (Becke3LYP/6-31+G) calculations.  相似文献   

20.
《Chemphyschem》2005,6(11):2404-2409
Herein, we continue our investigation of the single‐molecule spectroscopy of the conjugated polymer poly[2‐methoxy,5‐(2‐ethylhexyloxy)‐p‐phenylene‐vinylene] (MEH‐PPV) at cryogenic temperatures. First, the low temperature microsecond dynamics of single MEH‐PPV conjugated polymer molecules are compared to the dynamics at room temperature revealing no detectible temperature dependence. The lack of temperature dependence is consistent with the previous assignment of the dynamics to a mechanism that involves intersystem crossing and triplet–triplet annihilation. Second, the fluorescence spectra of single MEH‐PPV molecules at low temperature are studied as a function of excitation wavelength (i.e. 488, 543, and 568 nm). These results exhibit nearly identical fluorescence spectra for different excitation wavelengths. This strongly suggests that electronic energy transfer occurs efficiently to a small number of low‐energy sites in the multichromophoric MEH‐PPV chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号