首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
采用巨正则系综蒙特卡罗(grand canonical Monte Carlo, GCMC)与分子动力学(molecular dynamics, MD)相结合的方法, 研究烷烃分子在丝光沸石(MOR)型分子筛中的吸附和扩散性质. 采用GCMC 方法研究温度为300 K、330 K时, MOR型分子筛中甲烷、乙烷、丙烷、丁烷的吸附. 研究表明, 随着压力的增加吸附量增加, 随温度的升高吸附量有所降低. 饱和吸附量从大到小依次为: 甲烷>乙烷>丙烷>丁烷. 由模拟所得到的单组分吸附等温线, 通过理想吸附溶液理论(IAST)计算二元混合物的吸附平衡相图, 模拟结果与计算结果一致. 采用分子动力学方法, 研究乙烷、丙烷在MOR分子筛上的扩散性质, 结果表明各个方向上的扩散系数不同, z方向上的扩散系数最大.  相似文献   

2.
巨正则系综Monte Carlo模拟方法确定活性炭的微孔尺寸   总被引:3,自引:0,他引:3  
根据299K下甲烷在活性炭中的吸附实验数据,通过调节狭缝微孔的孔宽参数,利用巨正则系综MonteCarlo(GCEMC)方法得到不同孔宽下流体的微观结构以及吸附等温线.比较并拟合模拟结果和实验数据,确定了活性炭微孔的平均孔宽,为下一步求解微孔尺寸分布以及为预测吸附剂在不同温度下吸附不同吸附质分子时的吸附性能提供了基础与指导.模拟中,甲烷分子采用单点Lennard-Jones球型分子模型,活性炭用狭缝孔来近似表征,流体分子与单个狭缝墙的相互作用采用著名的Steele的10-4-3势能模型.模拟表明,此方法为考察介孔材料的微孔分布以及微孔平均孔宽提供了新的思路.  相似文献   

3.
4.
Adsorption of ethane in a slit shaped micropore system has been studied by Monte Carlo molecular simulation by considering this hydrocarbon as a two interacting sites molecule. Ethane adsorption in pore sizes from 0.41 to 1.66 nm was simulated at 303 K. Microscopic characteristics of the adsorbed phase have been studied for pores of different size, comparing two density profiles: the molecule centre of mass profile and the molecular interaction site profile. Averaged angle distribution of molecule positions with respect to the slit plane across the pore width has been also obtained by simulation. These results were related to ethane molecule packing efficiency, which is also related to the adsorption capacity in terms of the adsorbed phase density. Packing efficiency presents an oscillation shape as the result of the adsorbate disorder inside the pore. Pressure influence on the adsorption has been studied by following pore filling by simulation. When pore condensation takes place and for pressures above condensation, fluid-fluid interactions are determinant in molecule disorder observed between the two adsorbed layers.  相似文献   

5.
Carbons with slitlike pores can serve as effective host materials for storage of hythane fuel, a bridge between the petrol combustion and hydrogen fuel cells. We have used grand canonical Monte Carlo simulation for the modeling of the hydrogen and methane mixture storage at 293 K and pressure of methane and hydrogen mixture up to 2 MPa. We have found that these pores serve as efficient vessels for the storage of hythane fuel near ambient temperatures and low pressures. We find that, for carbons having optimized slitlike pores of size H congruent with 7 A (pore width that can accommodate one adsorbed methane layer), and bulk hydrogen mole fraction >or=0.9, the volumetric stored energy exceeds the 2010 target of 5.4 MJ dm(-3) established by the U.S. FreedomCAR Partnership. At the same condition, the content of hydrogen in slitlike carbon pores is approximately = 7% by energy. Thus, we have obtained the composition corresponding to hythane fuel in carbon nanospaces with greatly enhanced volumetric energy in comparison to the traditional compression method. We proposed the simple system with added extra container filled with pure free/adsorbed methane for adjusting the composition of the desorbed mixture as needed during delivery. Our simulation results indicate that light slit pore carbon nanomaterials with optimized parameters are suitable filling vessels for storage of hythane fuel. The proposed simple system consisting of main vessel with physisorbed hythane fuel, and an extra container filled with pure free/adsorbed methane will be particularly suitable for combustion of hythane fuel in buses and passenger cars near ambient temperatures and low pressures.  相似文献   

6.
Capillary condensation and polymolecular adsorption in narrow slits has been calculated, where the fields of surface forces overlap one another. The calculations were carried out on the basis of macroscopic theory of dispersion forces and the isotherms of lone adsorption layers at the free surface. It has been shown that under the effect of mutual attraction through a gap, polymolecular adsorption films lose their stability long before their thickness has approached the half-width of a flat slit. This results in hysteresis of the capillary condensation in an ensemble of plane-parallel slits.

In the case of systems having strong adsorbate-adsorbate interaction, there has been detected the existence of the lower limit of sizes of slit pores, wherein the capillary meniscus can coexist with adsorption films. With a slit width smaller than the critical one, the meniscus is likely to form a finite contact angle with “dry” surfaces of a slit. Thus an explanation has been given of the lower limit of the capillary condensation in an ensemble of flat-surface, slit pores. In the case of strong adsorbate-adsorbent interaction, the coexistence of meniscus with adsorption films within the scope of the approach used is possible in slits of any width.

The value of corrections for the surface forces effect to be entered in the calculations of slit pores dimensions has been analyzed on the basis of the capillary condensation data obtained.

In wedge-shaped slits there also exists, besides lower limit the upper limit of capillary hysteresis.  相似文献   


7.
The characteristics of the heat of adsorption from a slit pore model of carbon are presented. This is shown to have a few key features that are always present, regardless of the pore size distribution used, as long as there is a reasonable range of pore sizes considered. The adsorption in a slit pore model is compared against the adsorption for a defected pore model. The isotherms of the defected pore model are qualitatively different from those of the slit pore and similar to those of amorphous carbon models presented in the literature. The heat of adsorption of the defected pore model is qualitatively different from the slit pore model, and its behavior falls between those of the slit pore model and the amorphous carbon models in the literature.  相似文献   

8.
Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases.  相似文献   

9.
A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon(GAC)under different physical conditions.To carry out the experiments,the volumetric method was used up to 500 psia at constant temperature of 25℃.In these experiments,adsorption as well as desorption capacities of four different GAC in the adsorption of methane,the major constituent of natural gas,at various equilibrium pressures and a constant temperature were studied.Also,various adsorption isotherm models were used to model the experimental data collected from the experiments.The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported.The results shows that the physical characteristics of activated carbons such as BET surface area,micropore volume,packing density,and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.  相似文献   

10.
In this work, we describe two grand canonical-like molecular dynamics approaches to investigate mass diffusion phenomenon of a simple Lennard-Jones fluid confined between solid surfaces and in direct contact with reservoirs. In the first method, the density is used as the control variable in the reservoir whereas it is the pressure in the second method. Both methods provide consistent results, however, the constant density approach is the most efficient with respect to the computational time and implementation. Then, employing the constant density approach, we have studied the transient behavior of the diffusion process associated with the migration of one fluid into another one confined between parallel solid walls. Results have shown that the evolution of molar fraction of the invading fluid follows roughly a 1D diffusion model when the solid phase is weakly or moderately adsorbent with a characteristic time increasing when the pore width decreases. However, when the adsorption is high and the pore width small (i.e., below ten molecular sizes), the apparent mass diffusion in the adsorbed layer is reduced compared to that in the center of the slit pore. Hence, this mass diffusion process becomes a two-dimension phenomenon that must take into account an effective mass diffusion coefficient varying locally.  相似文献   

11.
Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.  相似文献   

12.
Water adsorption hysteresis is one of the most important phenomena observed during the interaction of water with hydrophobic surfaces. Adsorption hysteresis in micropores has strong relevance to the structure of adsorbed water. We used three typical models (cluster, monolayer, and uniform distribution structure models) to determine the structure of the water molecules adsorbed in hydrophobic slit-shaped carbon micropores. In each model, stabilization energy profiles were calculated for various fractional fillings by using the interaction potential theory. Simultaneously, molecular dynamics (MD) simulations of water adsorbed in the micropore of 1.1 nm pore width, which shows significant adsorption hysteresis, were performed to determine the kinetics of the observed structural transformations. The transformations between monolayer and cluster were slow, that is, kinetically forbidden at the fractional filling of 0.2 and 0.6, whereas the cluster-uniform distribution structure and uniform distribution structure-monolayer transformations were kinetically allowed. The kinetically forbidden transformation resulted in the occurrence of metastable structure of adsorbed water and was responsible for the observed adsorption hysteresis.  相似文献   

13.
In an attempt to offer a more realistic picture of adsorption in highly heterogeneous porous systems, such as oxygen functionalized porous carbons, we consider a series of carbon surfaces baring different amounts of oxygen functionalities (hydroxyl and epoxy). These surfaces are used to construct “oxidized” slit pores of varying width and functionality. With the aid of such inhomogeneous structures we study the interaction of Ar (87 K) inside “functionalized” pores and report grand canonical Monte Carlo adsorption simulations results. Based on our simulation data, we discuss the role of chemical heterogeneity on adsorbed/gas phase equilibrium properties such as density, heat of adsorption, and molecular packing within the pores. Comparisons are made with the case of the oxygen–free (completely homogeneous) slit pore models and conclusions on the suitability of Ar based pore size distributions for functionalized porous carbons are drawn.  相似文献   

14.
The effect of the pore wall model on the self-diffusion coefficient and transport diffusivity predicted for methane in graphitic slit pores by equilibrium molecular dynamics (EMD) and non-equilibrium MD (NEMD) is investigated. Three pore wall models are compared--a structured wall and a smooth (specular) wall, both with a thermostat applied to the fluid to maintain the desired temperature, and a structured wall combined with the diffuse thermalizing scattering algorithm of MacElroy and Boyle (Chem. Eng. J., 1999, 74, 85). Pore sizes ranging between 7 and 35 angstroms and five pressures in the range of 1-40 bar are considered. The diffuse thermalizing wall yields incorrect self-diffusion coefficients and transport diffusivities for the graphitic slit pore model and should not be used. Surprisingly, the smooth specular wall gives self-diffusion coefficients inline with those obtained using the structured wall, indicating that this computationally much faster wall can be used for studying this phenomenon provided the fluid-wall interactions are somewhat weaker than the fluid-fluid interactions. The structured wall is required, however, if the transport diffusivity is of interest.  相似文献   

15.
Argon adsorption (77 K) in atomistic silica nanopores of various sizes and shapes has been studied by means of grand canonical Monte Carlo simulations (GCMC). We discuss the effects of confinement (pore size), pore morphology (ellipsoidal, hexagonal, constricted pore), and surface texture (rough/smooth) on the thickness variation of the adsorbed film with pressure onto the disordered inner surface of porous materials (usually called t-plot or t-curve). We show that no confinement effect occurs when the diameter of the regular cylindrical pore is larger than 10 nm. For pores smaller than 6 nm, we find that the film thickness increases as the pore size decreases. We show that the adsorption isotherm in the rough pore can be described as the sum of an adsorbed amount similar to that found for a smooth pore (of the same radius) and a constant contribution due to atoms "trapped" in the infractuosities of the rough surface which act as a microporous texture. Simulation snapshots for Ar adsorption in hexagonal and ellipsoidal smooth pores indicate that at low pressures the gas/adsorbate interface retains memory of the pore shape and becomes cylindrical prior to the capillary condensation of the fluid in the pore. The film thickness in the hexagonal pore is close to that obtained for a cylindrical pore having a similar dimension. By contrast, we find that the film thickness for an ellipsoidal pore is always larger than that for an equivalent cylindrical pore (having the same length and volume but a circular section). We show that this effect strengthens as the pore size decreases and/or the pore asymmetry increases. Ar adsorption in a cylindrical constricted pore shows that the presence of the narrower part considerably modifies the adsorption mechanism. Finally, we report GCMC simulations of Ar adsorption (77 K) on a plane silica reference substrate for different intermolecular potentials. We discuss the effect of the interaction on the shape of the adsorption isotherm and compare our results with experiments.  相似文献   

16.
The diffusivities of methane in single-walled carbon nanotubes (SWNTs) are investigated at various temperatures and pressures using classical molecular dynamics (MD) simulations complemented with grand canonical Monte Carlo (GCMC) simulations. The carbon atoms at the nanotubes are structured according to the (m, m) armchair arrangement and the interactions between each methane molecule and all atoms of the confining surface are explicitly considered. It is found that the parallel self-diffusion coefficient of methane in an infinitely long, defect-free SWNT decreases dramatically as the temperature falls, especially at subcritical temperatures and high loading of gas molecules when the adsorbed gas forms a solidlike structure. With the increase in pressure, the diffusion coefficient first declines rapidly and then exhibits a nonmonotonic behavior due to the layering transitions of the adsorbed gas molecules as seen in the equilibrium density profiles. At a subcritical temperature, the diffusion of methane in a fully loaded SWNT follows a solidlike behavior, and the value of the diffusion coefficient varies drastically with the nanotube diameter. At a supercritical temperature, however, the diffusion coefficient at high pressure reaches a plateau, with the limiting value essentially independent of the nanotube size. For SWNTs with the radius larger than approximately 2 nm, capillary condensation occurs when the temperature is sufficiently low, following the layer-by-layer adsorption of gas molecules on the nanotube surface. For SWNTs with a diameter less than about 2 nm, no condensation is observed because the system becomes essentially one-dimensional.  相似文献   

17.
18.
We study by means of Grand Canonical Monte Carlo simulations the condensation and evaporation of argon at 77 K in nanoporous silica media of different morphology or topology. For each porous material, our results are compared with data obtained for regular cylindrical pores. We show that both the filling and emptying mechanisms are significantly affected by the presence of a constriction. The simulation data for a constricted pore closed at one end reproduces the asymmetrical shape of the hysteresis loop that is observed for many real disordered porous materials. The adsorption process is a quasicontinuous mechanism that corresponds to the filling of the different parts of the porous material, cavity, and constriction. In contrast, the desorption branch for this pore closed at one end is brutal because the evaporation of Ar atoms confined in the largest cavity is triggered by the evaporation of the fluid confined in the constriction (which isolates the cavity from the gas reservoir). This evaporation process conforms to the classical picture of "pore blocking effect" proposed by Everett many years ago. We also simulate Ar adsorption in a disordered porous medium, which mimics a Vycor mesoporous silica glass. The adsorption isotherm for this disordered porous material having both topological and morphological defects presents the same features as that for the constricted pore (quasicontinuous adsorption and steep desorption process). However, the larger degree of disorder of the Vycor surface enhances these main characteristics. Finally, we show that the effect of the disorder, topological and/or morphological, leads to a significant lowering of the capillary condensation pressure compared to that for regular cylindrical nanopores. Also, our results suggest that confined fluids isolated from the bulk reservoir evaporate at a pressure driven by the smallest size of the pore.  相似文献   

19.
Engelhard titanium silicate, ETS-4, is a promising new adsorbent for size-selective separation of mixtures of small gases, a leading industrially important example of which is methane-nitrogen separation. Single component equilibrium and kinetics of oxygen, nitrogen, and methane adsorption in Na-ETS-4 and cation-exchanged Sr-ETS-4, measured in an earlier study over a wide range of temperatures and pressures, are analyzed in this study. The adsorbent crystals were synthesized and pelletized under pressure (without any binder), thus giving rise to a bidispersed pore structure with controlling resistance in the micropores. Change in equilibrium and kinetics of adsorption of the aforementioned gases in Sr-ETS-4 due to pore shrinkage with progressively increasing dehydration temperature has also been investigated. Differential uptakes have been measured at various levels of adsorbate loading, which has allowed the elucidation of the nature of concentration dependence of micropore diffusivity. Both homogeneous and heterogeneous models are examined on the equilibrium data, while a bidispersed pore diffusion model is able to capture the differential uptakes very well. On the basis of chemical potential gradient as the driving force for diffusion, the impact of isotherm models on the concentration dependence of micropore diffusivity is also analyzed. It is shown that pore tailoring at the molecular scale by dehydration can improve the kinetic selectivity of nitrogen over methane in Sr-ETS-4 to a promising level. The models investigated are evaluated to identify essential details necessary to reliably simulate a methane-nitrogen separation process using the promising new Sr-ETS-4 adsorbent.  相似文献   

20.
The behavior of water in graphite microcapillaries is studied by computer simulation methods with allowance for the influence of adsorption forces. Profiles of the local density, energy, and distribution functions of molecules over orientations of the dipole moment vector and valence bonds in molecules characterizing the most probable arrangement of molecules in a capillary are calculated for the slits less than 1 nm in width. Disjoining pressure is estimated and its dependence on slit width is considered. The values of longitudinal diffusion coefficient of water in pores are calculated. The effect of width of the graphite slit on the local and integral characteristics of a system is discussed. The results obtained are compared with the data for absolutely nonwettable capillaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号