首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

2.
Manganese dioxide loaded activated carbon adsorbents (MnO2/AC) were prepared and characterized by N2 adsorption-desorption, BET method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy (SEM). Effects of preparation conditions and adsorption conditions on desulfurization performance of the adsorbents were studied in a fixed-bed adsorption apparatus. Experimental results show that the surface area and pore volume of MnO2/AC decreased compared with the unmodified activated carbon, but the adsorption capacity to H2S was improved greatly. A suitable H2S removal activity was obtained with manganese dioxide to activated carbon ratio of 1.1: 1 and the calcination temperature of 250°C. At the adsorption temperature of 40°C and gas flow rate of 20 mL/min, the H2S saturation capacity and H2S removal rate reached up to 713.25 mg/g and 89.9%, respectively.  相似文献   

3.
Activated carbon is very effective for simultaneous removal of multiple pollutants. The adsorption of SO2 and chlorobenzene modeling of VOCs on activated carbon was investigated in a fixed-bed reactor by four kinds of activated carbon. The results show that the SO2 adsorption is affected by the BET surface and basic functional groups as C=O and π–π* groups of the carbon, while the chlorobenzene adsorption is strongly affected by the carbon pore structure, with the micropore volume deciding the adsorption amount and larger pores increasing the adsorption rate. The chlorobenzene adsorption is little affected by the chemical properties of activated carbon as the O/C ratio detected by XPS. The effect of SO2 on the chlorobenzene adsorption was investigated, with the results showing the SO2 seriously restricts the individual chlorobenzene adsorption and this effect becomes smaller in the presence of O2. The adsorption products were analyzed by TPD-MS and the initial decomposition temperatures are 380 K for chlorobenzene and 500 K for SO2, showing that SO2 is much more stable adsorbed than chlorobenzene. The changes of the carbon functional groups that the CO2 desorption peak emerges at 700 K and decreases at 1000 K with the chlorobenzene adsorption, were observed by TPD-MS, indicating that the lactone and quinone groups on the carbon are likely to combine with the chlorobenzene and form weakly chemisorbed chlorobenzene.  相似文献   

4.
Single wall carbon nanotube (SWCNT), which has bundle structure and entangled structure, was untangled and cut by sonication in hydrogen peroxide (H2O2) solution. The untangled state of SWCNT was examined by SEM, TEM, Raman spectroscopy and N2 adsorption. It was confirmed that the surface area of sonicated nanotubes strongly depended on the sonication time. The BET specific surface area (SSA) of nanotubes sonicated for 3 h was maximum. The SSA decreased at 6 h or more of sonication time. These results indicated that the bundle structure was untangled and the cap of SWCNT was opened. Thus, N2 molecules can access the most efficiently inside of the SWCNT sonicated for 3 h. On the contrary, the sonication treatment for 6 h or more decomposed the nanotubes to produce amorphous carbon, evidenced by TEM and SEM observation; the amorphous carbon blocked the open pore sites such as the internal pore spaces and interstitial pores.  相似文献   

5.
Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.  相似文献   

6.
以乙二醇为还原剂,采用溶剂热法在混酸(V_(H_2SO_4)/V_(HNO_3)=3∶1)超声处理的碳纳米管(CNTs)表面负载氧化亚铜(Cu_2O),通过改变CNTs的含量制备出球形Cu_2O/CNTs复合材料。采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、能谱分析(EDS)、N_2吸附-脱附、紫外-可见光漫反射(DRS)、有机总碳量(TOC)等对Cu_2O/CNTs进行表征;研究CNTs含量对Cu_2O/CNTs复合材料的结构、形貌、比表面积与孔径、光吸收特性的影响;结合光催化机理讨论CNTs对Cu_2O/CNTs光催化性能的影响。结果表明,当CNTs含量为0.2 g时,Cu_2O/CNTs的光催化性能最佳,在可见光照射60 min后,对甲基橙的降解率达到92.1%。  相似文献   

7.
In order to address open questions concerning the surface chemistry and pore structure characterization of nanoporous carbons, we performed extensive experiments by combining various experimental techniques on a series of commercially available activated carbons which exhibit diverse surface chemistry characteristics. Pore size analysis was performed on Ar (87 K), N2 (77 K) and CO2 (273 K) adsorption isotherms using state-of-the art methods based on density functional theory, including the recently developed quenched solid density functional theory (QSDFT). A detailed study of the surface chemistry was obtained by applying temperature programmed desorption coupled with mass spectrometry (TPD-MS) as well as XPS (X-Ray-Photoelectron Scattering). This information together with the pore structure information leads to a reliable interpretation of systematic water adsorption measurements obtained on these materials. Our results clearly suggest that water adsorption is indeed a sensitive tool for detecting differences in surface chemistry between chemically and physically activated active carbon materials with comparable ultramicropore structure. The occurrence of sorption hysteresis associated with the filling of micro- and narrow mesopores (in a range where nitrogen and argon isotherms are reversible) provides additional structural information, complementary to the insights from argon/nitrogen/carbon dioxide adsorption.  相似文献   

8.
The adsorption of ethanol/cyclohexane binary mixtures on different types of activated carbons was studied in this work by temperature programmed desorption coupled with mass spectroscopy (TPD-MS). The texture, morphology and surface chemistry of the carbons were evaluated by N2 adsorption, scanning electron microscopy (SEM) and TPD-MS techniques. The ethanol and cyclohexane TPD-MS desorption profiles showed that specific interactions between the carbon material and the adsorbate are involved during the adsorption. Most of the activated carbons adsorb strongly ethanol on the surface, leading to desorption temperatures above 100 °C. Only one carbon exhibits an affinity for cyclohexane. These observations were correlated to the different surface chemistry of the materials.  相似文献   

9.
用X-射线光电子能谱对3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维 (SACF) 的表面化学结构进行了表征,并研究和对比了它们的吸附性能,包括对碘、苯酚和亚甲基蓝的液相吸附性能,对有机蒸汽的吸附性能以及对Au3+的还原吸附性能等。结果表明,3个样品表面均含有多种含氧官能团,吸附能力SACF>SSAC> CAC4。样品的吸附性能主要取决于自身孔结构,与其表面化学结构也有密切的关系。  相似文献   

10.
Dihydrogen adsorption at 77 K on a number of fine-particle carbon materials, activated carbons, and carbon nanotubes has been investigated. The micropore structure parameters of these materials have been determined using a volumetric comparative method and nonlocal density functional theory (NLDFT). These data processing methods lead to different values of textural parameters. This difference is attributed to the presence of specific sorption sites on the surface of real carbon materials. The pore size range in which the NLDFT method is applicable to the C-H2 system has been determined. A comparison between the hydrogen sorption properties of different carbon nanotubes is presented.  相似文献   

11.
Steam activated carbons from oil-palm shells were prepared and used in the adsorption of phenol. The activated carbon had a well-developed mesopore structure which accounted for 45% of the total pore volume. The BET surface area of the activated carbon was 1183 m2/g and a total pore volume of 0.69 cm3/g using N2 adsorption at 77 K. The adsorption capacity of the activated carbon for phenol was 319 mg/g of adsorbent at 298 K. The adsorption isotherms could be described by both the Langmuir-Freundlich and the Langmuir equations. The adsorption kinetics consisted of a rapid initial uptake phase, followed by a slow approach to equilibrium. A new multipore model is proposed that takes into account of a concentration dependent surface diffusion coefficient within the particle. This model is an improvement to the traditional branched pore model. The theoretical concentration versus time curve generated by the proposed model fitted the experimental data for phenol adsorption reasonably well. Phenol adsorption tests were also carried out on a commercial activated carbon known as Calgon OLC Plus 12×30 and the agreement between these adsorption data and the proposed model was equally good.  相似文献   

12.
The separation between CH4 and N2 bears importance in coalbed methane enrichment, and activated carbon is a major adsorbent for industrial PSA (pressure swing adsorption) separation. However, the adsorption of both gases shows supercritical features, and the physicochemical properties are also similar, which results in similar adsorption behavior and renders the separation difficult. To maximize the separation coefficient, the effect of carbon pore structure on the separation was studied and a series of carbons was prepared at different extent of activation. The effect of specific surface area, pore size and pore volume on the separation coefficient was observed and a linear correlation between the separation coefficient and the small pore (0.7–1.3?nm) volume reduced to unit surface area was shown.  相似文献   

13.
The adsorption of p-nitrophenol in one untreated activated carbon (F100) and three treated activated carbons (H2, H2SO4 and Urea treated F100) was carried out at undissociated and dissociated conditions.To characterize the carbon, N2 and CO2 adsorption were used. X-ray Photoelectron Spectroscopy (XPS) was used to analyze the surface of the activated carbon.The experimental isotherms are fitted via the Langmuir homogenous model and Langmuir binary model. Variation of the model parameters with the solution pH is studied. Both Q max and the adsorption affinity coefficient (K 1) were dependent on the PZC of the carbons and solution pH. The Effect of pH must be considered due to its combined effects on the carbon surface and on the solute molecules. Adsorption of p-nitrophenol at higher pH was found to be dependent on the concentration of the anionic form of the solute.  相似文献   

14.
Micro- and mesoporous carbide-derived carbons synthesized from molybdenum and tungsten carbides were used as porous supports for a platinum catalyst. Synthesized materials were compared with commercial Vulcan XC72R conducting furnace black. The scanning electron microscopy, X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and low-temperature N2 adsorption methods were applied to characterize the structure of catalysts prepared. The kinetics of oxygen electroreduction in 0.5 M H2SO4 solution was studied using cyclic voltammetry and rotating disk electrode methods. The synthesized carbide-derived carbons exhibited high specific surface area and narrow pore size distribution. The platinum catalyst was deposited onto the surface of a carbon support in the form of nanoparticles or agglomerates of nanoparticles. Comparison of carbide-derived carbons and Vulcan XC72R as a support showed that the catalysts prepared using carbide-derived carbons are more active towards oxygen electroreduction. It was shown that the structure of the carbon support has a great influence on the activity of the catalyst towards oxygen electroreduction.  相似文献   

15.
研究活性炭在硫化氢存在条件下催化氧化脱除煤气中单质汞的吸附机理和探讨提高其吸附能力的方法,在模拟煤气气氛下对3种活性炭和一种活性焦进行汞的吸附性能实验,并进一步分析活性炭(焦)的孔隙结构。用BET方程处理N2等温吸附数据,计算比表面积;用HK法进行微孔分析;用BJH法计算中孔孔径分布。结果表明,硫化氢被催化氧化后,生成吸附在活性炭孔壁上的活性硫促进了对汞的吸附;随着活性炭微孔和中孔体积的增大,活性炭对汞的吸附能力得到提高。  相似文献   

16.
叶青  张瑜  李茗  施耀 《物理化学学报》2012,28(5):1223-1229
采用浸渍法将四乙烯五胺(TEPA)和三乙烯四胺(TETA)负载至碳纳米管(CNTs)上,得到一种固态胺吸附剂CNTs-TEPA和CNTs-TETA,用以吸附低浓度下的CO2.利用扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外(FTIR)光谱、N2物理吸附脱附、元素分析和热重分析(TGA)等方法表征样品.结果表明:CNTs-TEPA和CNTs-TETA形态并未发生变化,仍保留CNTs规整有序的孔道结构,但样品的比表面积和孔容都显著减小.在常温条件下,CNTs-TEPA和CNTs-TETA的CO2吸附量与CNTs相比有显著提高,同时,在胺浸渍质量相同的情况下,改性后的CNTs-TEPA效果优于CNTs-TETA.温度从20℃升至30℃,CNTs-TEPA和CNTs-TETA的CO2吸附量分别从126.7、101.2mg·g-1升至139.3、110.4mg·g-1.CNTs的吸附量随着温度的增加变化不明显.最后,采用Suyadal和Yasyerli两种模型对CO2的动态吸附穿透曲线进行拟合,结果说明Yasyerli模型对CNTs、CNTs-TEPA和CNTs-TETA的CO2吸附过程的拟合程度更高.  相似文献   

17.
In our recent paper (Jagiello and Olivier, Carbon 55:70–80, 2013) we considered introducing energetical heterogeneity (EH) and geometrical corrugation (GC) to the pore walls of the standard carbon slit pore model. We treated these two effects independently and we found that each of them provides significant improvement to the carbon model. The present work is a continuation of the previous one, as we include both effects in one comprehensive model. The existing standard slit pore model widely used for the characterization of activated carbons assumes graphite-like energetically uniform pore walls. As a result of this assumption adsorption isotherms calculated by the non-local density functional theory (NLDFT) do not fit accurately the experimental N2 data measured for real activated carbons. Assuming a graphene-based structure for activated carbons and using a two-dimensional-NLDFT treatment of the fluid density in the pores we present energetically heterogeneous and geometrically corrugated (EH–GC) surface model for carbon pores. Some parameters of the model were obtained by fitting the model to the reference adsorption data for non-graphitized carbon black. For testing, we applied the new model to the pore size analysis of porous carbons that had given poor results when analyzed using the standard slit pore model. We obtained an excellent fit of the new model to the experimental data and we found that the typical artifacts of the standard model were eliminated.  相似文献   

18.
氯化锌活化对炭气凝胶微球的结构与电化学性能的影响   总被引:2,自引:2,他引:0  
刘宁 《无机化学学报》2013,29(3):551-556
对炭气凝胶微球在高温下进行氯化锌活化改性,并用于制作超级电容器的电极。采用扫描电镜、N2物理吸附-脱附等对炭气凝胶微球的形貌结构进行表征,采用循环伏安、恒流充放电等测定了材料的电化学性能。结果表明,氯化锌活化有效地改善了炭气凝胶微球的孔结构,通过增加炭气凝胶微球的微孔面积和体积,提高了材料的比表面积和孔隙率。经过氯化锌活化,炭气凝胶微球的电化学性能也随之得到提高,电阻明显减小,比电容提高了2倍以上。  相似文献   

19.
Activated carbons (ACs) for electric double layer capacitors (EDLCs) were fabricated from waste tea leaves, activated with the pore-forming substances ZnCl2 then, carbonized at high-temperature in N2 atmosphere. The surface texture and porosity of the ACs were determined using transmission electron micros-copy and N2 adsorption/desorption studies. The surface area of the 20 wt % ZnCl2 treated sample was found to be 1029 m2g?1 and had a distribution of micropores and mesopores. The electrochemical properties of the ACs were evaluated by using cyclic voltammetry and galvanostatic charge-discharge studies. ACs from waste tea leaves exhibited excellent specific capacitance as high as 196 F g?1 in the 0.1 M Na2SO4 neutral electrolyte, with rectangular-like cyclic voltammetry curves at a cell potential of 1.5 V and good cyclability with a capacitance retention of 95% at a high current density of 100 mA g?1 for 2000 cycles. The results show that the pore texture properties and specific surface area of ACs are dominated by changing carbonization temperature and the amount of activating agent ZnCl2. The electrochemical performance is influenced mainly by surface area, but the pore size distribution becomes a dominating factor for specific capacitance of a carbon electrode material when the pore structure is in range of micropores/mesopores.  相似文献   

20.
Despite the extensive use of 129Xe NMR for characterization of high surface-to-volume porous solids, particularly zeolites, this method has not been widely used to explore the properties of microporous carbon materials. In this study, commercial amorphous carbons of different origin (produced from different precursors) and a series of activated carbons obtained by successive cyclic air oxidation/pyrolysis treatments of a single precursor were examined. Models of 129Xe chemical shift as a function of local Xe density, mean pore size, and temperature are discussed. The virial coefficient arising from binary xenon collisions, σXe-Xe, varied linearly with the mean pore size given by N2 adsorption analysis; σXe-Xe appeared to be a better probe of the mean pore size than the chemical shift extrapolated to zero pressure, σS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号