首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对广义黏弹组合模型的等效性及其基本性质进行了研究,结果表明:广义Maxwell模型由于并联结构,其蠕变柔量很难得到. 但提出了求解广义Maxwell模型蠕变柔量的方法,给出了其具体表达式,且在此基础上证明了广义Maxwell模型与Kelvin链的等效性,建立了这两个模型物理参数间的转换关系式. 证明了广义黏弹组合模型的一个基本性质:当将模型的松弛时间谱和延迟时间谱由大到小顺序排列时,松弛时间与延迟时间互不相等,且相互交织,两相邻松弛时间中间有且仅有一个延迟时间,同时,两相邻延迟时间中间有且仅有一个松弛时间;当两者同阶相比时,延迟时间总是大于松弛时间. 这一基本性质明确了使用广义黏弹组合模型来描述现实中某种特定材料的黏弹性行为时,该材料必须具备的基本条件,因此,它可作为这类流变模型在工程应用中的一个实用判据. Wiechert模型和广义中村模型、广义Jeffreys模型和广义N-K模型、Maxwell链和广义Kelvin模型之间的等效性可作为特例.最后,实例验证了所提出的求解广义黏弹组合模型蠕变柔量方法及其基本性质.   相似文献   

2.
In 1958, Jeffreys (Geophys J?R Astron Soc 1:92–95) proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys–Lomnitz law of creep by allowing its power law exponent α, usually limited to the range 0?≤?α?≤?1 to all negative values. This is consistent with the linear theory of viscoelasticity because the creep function still remains a Bernstein function, that is positive with a completely monotone derivative, with a related spectrum of retardation times. The complete range α?≤?1 yields a continuous transition from a Hooke elastic solid with no creep $\left(\alpha \,\to\, -\infty\right)$ to a Maxwell fluid with linear creep $\left(\alpha \,=\,1\right)$ passing through the Lomnitz viscoelastic body with logarithmic creep $\left(\alpha\, =0\right)$ , which separates solid-like from fluid-like behaviors. Furthermore, we numerically compute the relaxation modulus and provide the analytical expression of the spectrum of retardation times corresponding to the Jeffreys–Lomnitz creep law extended to all α?≤?1.  相似文献   

3.
The article describes the unsteady motion of viscoelastic fluid for a Maxwell model with fractional derivatives. The flow is produced by cylinder, considering time dependent quadratic shear stress ft2 on Maxwell fluid with fractional derivatives. The fractional calculus approach is used in the constitutive relationship of Maxwell model. By applying Laplace transform with respect to time t and modified Bessel functions, semianalytical solutions for velocity function and tangential shear stress are obtained. The obtained semianalytical results are presented in transform domain, satisfy both initial and boundary conditions. Our solutions particularized to Newtonian and Maxwell fluids having typical derivatives. The inverse Laplace transform has been calculated numerically. The numerical results for velocity function are shown in Table by using MATLAB program and compared them with two other algorithms in order to provide validation of obtained results. The influence of fractional parameters and material constants on the velocity field and tangential stress is analyzed by graphs.  相似文献   

4.
It has been long observed that cumbersome parameters are required for the traditional viscoelastic models to describe complex rheological behaviors. Inspired by the relationship between normal and anomalous diffusions, this paper tentatively employs t α to replace t, called as the scaling transformation, in the traditional creep compliance and relaxation modulus. With this methodology, the relaxation modulus is found to agree with the well-known Kohlrausch-Williams-Watts (KWW) stretched exponential function. The fitting results confirm that the proposed models accurately characterize rheological behaviors only with one more parameter α. Moreover, it is noted that the present formulations are directly related to the fractal derivative viscoelastic models and the index α is actually the order of the fractal derivative.  相似文献   

5.
将幂函数引入Eringen非局部线粘弹性本构,导出Riesz势形式的应力-应变关系。利用该关系,构造非局部弹簧和非局部阻尼器两类元件;利用元件的串联和并联,建立非局部Kelvin和非局部Maxwell粘弹性模型,推导模型的松弛模量和蠕变柔量。进一步,给出非局部粘弹性模型在生物组织超声波耗散建模中的应用。  相似文献   

6.
Very recently, researchers dealing with constitutive law pertinent viscoelastic materials put forward the successful idea to introduce viscoelastic laws embedded with fractional calculus, relating the stress function to a real order derivative of the strain function. The latter consideration leads to represent both, relaxation and creep functions, through a power law function. In literature there are many papers in which the best fitting of the peculiar viscoelastic functions using a fractional model is performed. However there are not present studies about best fitting of relaxation function and/or creep function of materials that exhibit a non-linear viscoelastic behavior, as polymer melts, using a fractional model. In this paper the authors propose an advanced model for capturing the non-linear trend of the shear viscosity of polymer melts as function of the shear rate. Results obtained with the fractional model are compared with those obtained using a classical model which involves classical Maxwell elements. The comparison between experimental data and the theoretical model shows a good agreement, emphasizing that fractional model is proper for studying viscoelasticity, even if the material exhibits a non-linear behavior.  相似文献   

7.
We show how to formulate two-point boundary value problems to compute laminar channel, tube, and Taylor–Couette flow profiles for some complex viscoelastic fluid models of differential type. The models examined herein are the Pom-Pom Model [McLeish and Larson 42:81–110, (1998)] the Pompon Model [Öttinger 40:317–321, (2001)] and the Two Coupled Maxwell Modes Model (Beris and Edwards 1994). For the two-mode Upper-Convected Maxwell Model, we calculate analytical solutions for the three flow geometries and use the solutions to validate the numerical methodology. We illustrate how to calculate the velocity, pressure, conformation tensor, backbone orientation tensor, backbone stretch, and extra stress profiles for various models. For the Pom-Pom Model, we find that the two-point boundary value problem is numerically unstable, which is due to the aphysical non-monotonic shear stress vs shear rate prediction of the model. For the other two models, we compute laminar flow profiles over a wide range of pressure drops and inner cylinder velocities. The volumetric flow rate and the nonlinear viscoelastic material properties on the boundaries of the flow geometries are determined as functions of the applied pressure drop, allowing easy analysis of experimentally measurable quantities.  相似文献   

8.
Huiru Cui  Zhibin Shen  Haiyang Li 《Meccanica》2018,53(14):3527-3544
A novel time dependent cohesive zone model (CZM) is proposed in this paper based on two main assumptions. Firstly, ultimate cohesive parameters are inherent and fixed for a given non-aging bond interface. The apparent cohesive parameters are time related variables. Secondly, relaxation response of the interface is the main reason for the time dependent traction. Numerical simulation shows that the traction, critical displacement as well as damage initiation displacement will increase with imposed loading rate and parameter λ for single Maxwell box based model. N single Maxwell box connected in parallel construct the N Maxwell box based model, and each Maxwell box bears 1/N traction of the interface. Double cantilever beam (DCB) is utilized to investigate the structure response with the single Maxwell box based model including constant stretch and relaxation test. Quite good agreement between the numerical and experimental reaction force–displacement curves is obtained from stretch test of Double cantilever sandwich beam (DCSB) specimen with four different N Maxwell box based model, especially when the number of the Maxwell box is 7. It is a fact that the model will be more adaptive with more Maxwell box connected in parallel which can be revealed by the verification test.  相似文献   

9.
In this paper, we make the first attempt to apply the fractal derivative to modeling viscoelastic behavior. The methodology of scaling transformation is utilized to obtain the creep modulus and relaxation compliance for the proposed fractal Maxwell and Kelvin models. Comparing with the fractional derivatives reported in the literature, the fractal derivative as a local operator has lower calculation costs and memory storage requirements. Moreover, numerical results show that the proposed fractal models require fewer parameters, have simpler mathematical expression and result in higher accuracy than the classical integer-order derivative models. Results further confirm that the proposed fractal models can characterize the creep behavior of viscoelastic materials.  相似文献   

10.
A four-parameter Maxwell model is formulated with fractional derivatives of different orders of the stress and strain using the Riemann-Liouville definition. This model is used to determine the relaxation and retardation functions. The relaxation function was found in the time domain with the help of a power law series; a direct solution was used in the Laplace domain. The solution can be presented as a product of a power law term and the Mittag-Leffler function. The retardation function is determined via Laplace transformation and is solely a power law type.The investigation of the relaxation function shows that it is strongly monotonic. This explains why the model with fractional derivatives is consistent with thermodynamic principles.This type of rheological constitutive equation shows fluid behavior only in the case of a fractional derivative of the stress and a first order derivative of the strain. In all other cases the viscosity does not reach a stationary value.In a comparison with other relaxation functions like the exponential function or the Kohlrausch-Williams-Watts function, the investigated model has no terminal relaxation time. The time parameter of the fractional Maxwell model is determined by the intersection point of the short- and long-rime asymptotes of the relaxation function.  相似文献   

11.
Start up of plane Couette flow and large amplitude oscillatory shear flow of single and multimode Maxwell fluids as well as Oldroyd-B fluids have been analyzed by analytical or semi-analytical procedures. The result of our analysis indicates that if a single or a multimode Maxwell fluid has a relaxation time comparable or smaller than the rate of change of force imparted on the fluid, then the fluid response is not singular as Elasticity Number (E ). However, if this is not the case, as E , perturbations of single and multimode Maxwell fluids give rise to highly oscillatory velocity and stress fields. Hence, their behavior is singular in this limit. Moreover, we have observed that transients in velocity and stresses that are caused by propagation of shear waves in Maxwell fluids are damped much more quickly in the presence of faster and faster relaxing modes. In addition, we have shown that the Oldroyd-B model gives rise to results quantitatively similar to multimode Maxwell fluids at times larger than the fastest relaxation time of the multimode Maxwell fluid. This suggests that the effect of fast relaxing modes is equivalent to viscous effects at times larger than the fastest relaxation time of the fluid. Moreover, the analysis of shear wave propagation in multimode Maxwell fluids clearly show that the dynamics of wave propagation are governed by an effective relaxation and viscosity spectra. Finally, no quasi-periodic or chaotic flows were observed as a result of interaction of shear waves in large amplitude oscillatory shear flows for any combination of frequency and amplitudes.  相似文献   

12.
The aim of indentation analysis is to link indentation data, typically an indentation force vs. indentation depth curve, Ph, to meaningful mechanical properties of the indented material. While well established for time independent behavior, the presence of a time dependent behavior can strongly affect both the loading and the unloading responses. The paper presents a framework of viscoelastic indentation analysis based on the method of functional equations, developed by Lee and Radok [1960, The contact problem for viscoelastic bodies, J. Appl. Mech. 27, 438–444]. While the method is restricted to monotonically increasing contact areas, we show that it remains valid at the very beginning of the unloading phase as well. Based on this result, it is possible to derive closed form solutions following the classical procedure of functional formulations of viscoelasticity: (1) the identification of the indentation creep function, which is the indentation response to a Heaviside load; and (2) a convolution integral of the load history over the indentation creep function. This is shown here for a trapezoidal loading by a conical indenter on three linear isotropic viscoelastic materials with deviator creep: the 3-parameter Maxwell model, the 4-parameter Kelvin–Voigt model and the 5-parameter combined Kelvin–Voigt–Maxwell model. For these models, we derive closed form solutions that can be employed for the back-analysis of indentation results from the loading and holding period and for the definition of unloading time criteria that ensure that viscous effects are negligible in the unloading response.  相似文献   

13.
Generally, the complex behaviour of the disc of the temporomandibular joint (TMJ) cannot be adequately represented using linear elastic or linear viscoelastic models. Since the disc is regularly subjected to large strain and stress levels, the study of its non-linear response under compression is of practical interest, especially for analysis of medical dysfunctions. With this aim, relaxation and creep tests were carried out using round specimens of diameters ranging between 4 and 6 mm cut off from the central, anterior, posterior, lateral and medial zones of porcine discs to investigate the regional mechanical properties differences. The experimental data results are fitted using Prony series, based on generalized Maxwell and Kelvin models, allowing the relaxation and creep moduli to be represented, respectively, as a function of the strain and stress. The results show that the non-linear material behaviour of this biological tissue is properly described by the proposed models, to be considered subsequently in numerical calculations.  相似文献   

14.
Following the modelling of Zener, we establish a connection between the fractional Fokker-Planck equation and the anomalous relaxation dynamics of a class of viscoelastic materials which exhibit scale-free memory. On the basis of fractional relaxation, generalisations of the classical rheological model analogues are introduced, and applications to stress–strain relaxation in filled and unfilled polymeric materials are discussed. A possible generalisation of Reiner's Deborah number
is proposed for systems which exhibit a diverging characteristic relaxation time.  相似文献   

15.
In this note we generalize the classical viscoelastic fluid model due to Maxwell to allow the relaxation time and the viscosity to depend on the stress. Such models are very useful in describing the response of geological and many other polymeric fluids. The procedure that is adopted to carry out the generalization allows one to have the springs and dashpots and their three dimensional generalizations, to be described by implicit constitutive theories thereby greatly enlarging the class of constitutive models that can be put into place to describe the response of complex viscoelastic fluids.  相似文献   

16.
康永刚  张秀娥 《力学学报》2012,44(2):456-459
在应力作用下, 材料的力学参数随着微观结构的变化而变化, 需要考虑参数的时间效应. 利用黏滞系数随时间变化的黏性元件, 构造出非定常Maxwell模型、非定常Kelvin模型和非定常Zener模型. 求解非定常模型的微分型本构方程得到它们的松弛模量、蠕变柔量和卸载方程. 结果表明, 可以把常见的经验松弛函数和经验蠕变函数视为非定常微分型本构模型.   相似文献   

17.
We study the energy decay of the solutions of a linear homogeneous anisotropic thermoelastic diffusion system with second sound and dissipative boundary of the form $$\mathbf{T}(x,t)n(x) = -\gamma_0v(x,t) -\int_0^\infty \lambda(s)v^t(x,s) ds. $$ This boundary condition well describes a material for which the domain outside the body consists in a material of viscoelastic type. Models of boundary conditions including a memory term which produces damping were proposed in Fabrizio and Morro (Arch. Ration. Mech. Anal. 136:359–381, 1996) in the context of Maxwell equations and in Propst and Prüss (J. Integral Equ. Appl. 8:99–123, 1996) for sound evolution in a compressible fluid. The thermal and diffusion disturbances are modeled by Cattaneo-Maxwell law for heat and diffusion equations to remove the physical paradox of infinite propagation speed in the classical theory within Fourier’s law. The system of equations in this case is a coupling of three hyperbolic equations. By introducing a boundary free energy, we prove that, if the kernel λ exponentially decays in time then also the energy exponentially decays. Finally, we generalize the obtained results to the Gurtin-Pipkin model.  相似文献   

18.
何伟  张为民  罗希延  李亚 《实验力学》2011,26(3):261-266
针对经典黏弹性模型不能很好分析黏弹性材料的蠕变行为问题,运用分数阶导数的类标准线性体模型与Prony级数模型研究了黏弹性材料尼龙6/蒙脱土复合材料的蠕变行为.采用原位聚合法制备了尼龙6/蒙脱土复合材料,在室温环境下对其进行蠕变实验.然后运用分数阶导数的类标准线性体模型和Prony级数模型对复合材料的蠕变实验数据进行分析...  相似文献   

19.
For high-molecular-weight (M) ring polymers with low contamination of linear chains, recent viscoelastic tests revealed broad terminal relaxation associated with no clear entanglement plateau. This relaxation behavior is qualitatively similar to that deduced from molecular models (double-folded lattice-animal model and the fractal loopy globule model) for entangled ring polymers, but quantitatively important differences are also noted: For example, the full terminal relaxation of those polymers is slower than the model prediction. This study re-examined the viscoelastic data of entangled high-M ring polystyrene (PS) samples (coded as R-240; M = 244×103) specifically for two points: the purity of the ring samples after the viscoelastic tests and the molecular origin of the stress. For the first point, the R-240 samples contaminated with linear chains at low but different levels were prepared by tuning either the purification efficiency or the retention time of the sample at high temperature (T) before/during the viscoelastic test. The fraction w L of the linear contaminant, determined after the viscoelastic measurement, was ranging from 0.7 to 4.9%, and the extrapolation of the modulus data to w L = 0 gave the data for the ideally pure ring melt. This pure ring melt exhibited broad terminal relaxation that started faster but completed slower compared to the model prediction, indicating that the ring relaxation is not well described by the current model(s) even in the absence of linear contaminant. For the second point, dynamic birefringence measurements were conducted for the R-240 samples with w L = 4.6 and 1.0%. These samples obeyed the stress-optical rule, and their stress-optical coefficient was indistinguishable from that for linear PS samples, revealing that the stress of the ring PS chains reflects the orientational anisotropy of the chains (as is the case also for linear chains). The relaxation behavior of pure ring PS melt is discussed on the basis of these findings, with the focus being placed on the ring-ring threading not considered in the models.  相似文献   

20.
In order to determine the effect of finite deformations on the stability and non-linear time-deflection behaviour of linearly viscoelastic uniaxially stressed structures, a series of simple rigid-bar-spring dashpot models were analysed ‘exactly’. The material representation was also kept as simple as possible using the standard three-element solid model.Results obtained indicate that the relaxation behaviour of such a structure depends only on its material properties. The creep response is influenced not only by the load level but most significantly by the instantaneous non-linear elastic characteristics of the structure. For structures exhibiting instantaneous elastic local instability a ‘critical time’ may be defined beyond which equilibrium is impossible. The definition for ‘safe-load-limit’ or viscoelastic critical force usually used in linear stability analyses of viscoelastic columns is generalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号