首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

2.
《Analytical letters》2012,45(17):3182-3194
Abstract

It is the first time that Horseradish peroxidase (HRP) was successively immobilized on the magnetic cobalt nanoparticles modified ITO (indium tin oxide) electrode. Morphologies of electrode surface were featured by the field emission‐scanning electron microscope (FSEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the modified process of electrode. Direct electrochemistry and electrocatalysis of HRP immobilized on nano‐Co/ITO were investigated. The biosensor exhibited high sensitivity, good stability, and excellent electrocatalytic activity to the reduction of H2O2. Under the optimized experimental conditions, a calibration curve over 2.0×10?9~2.0×10?8 mol l?1 and 2.0×10?7~2.0×10?6 mol l?1, with a limit of detection of 1.9×10?9 mol l?1 was obtained. The apparent Michaelis‐Menten constant (K M app ) for HRP/nano‐Co/ITO electrode was calculated to be 0.79 mmol l?1, indicating a higher affinity of HRP attached on the modified electrode.  相似文献   

3.
《Analytical letters》2012,45(7):735-745
A simple and disposable electrochemical immunosensor for detection of 68 kDa alpha-fetoprotein (AFP) was fabricated based on films of silk fibroin protein membrane (SFPM)/Prussian blue (PB)/deposition of gold nanoparticles (DpAu). First, DpAu and PB were electrochemically deposited successively on the surface of indium tin oxide (ITO) electrode. Then, SFPM with excellent biocompatibility was modified on the surface of PB/DpAu/ITO. The SFPM could form a stable matrix on the electrode surface for the deposition of immunoactive agents. More importantly, the SFPM could prevent the possible leakage of electron mediator and enhance the stability of immunosensor. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the assembly process of the modified electrode. The linear range of the proposed immunosensor extended from 1.0 to 200.0 ng/mL for detection of AFP with a detection limit of 0.6 ng/mL. Moreover, the CV test demonstrated the immunosensor exhibited acceptable reproducibility and stability. This composite membrane could be applied for the detection of different biomarkers, diagnosis, and monitoring of carcinoma.

[Supplementary materials are available for this article. Go to the publisher's online edition of Analytical Letters for the following free supplemental resources: additional figures.]  相似文献   

4.
The detection of α‐methylacyl‐CoA racemase (AMACR), a novel biomarker for prostate cancer, is demonstrated in serum and urine using a novel immuno‐detection method. The detection system consists of a three‐electrode conventional electrochemical cell modified with a gating electrode for applying a gating voltage VG to the immune complex immobilized on the working electrode to provide signal amplification. The detection system is realized by integrating gating electrodes with screen‐printed electrodes. This detection method does not require involved sample preparation procedures. The detection was demonstrated in serum and urine samples on the nanogram/mL level with VG equal to 0.6 V. Detection in serum was also performed on the picogram/mL level with a limit of 100 picogram/mL with VG=0.6 V being a necessary condition.  相似文献   

5.
《Analytical letters》2012,45(16):2559-2570
A sensitive electrochemical DNA biosensor based on a mixed monolayer structure self-assembled at nanoporous gold (NPG) electrode surface was prepared for Escherichia coli (E. coli) detection. The NPG was fabricated on gold electrode, onto which thiolated oligonucleotides (SH-DNA) and mercaptohexanol (MCH) were covalently linked forming a mixed self-assembled monolayer (SAM). The hybridization between the SH-DNA/MCH modified biosensor and E. coli DNA was monitored with differential pulse voltammetry measurement using methylene blue (MB) as the hybridization indicator. The biosensor can detect 1 × 10?12 M DNA target and 50 cfu/μL E. coli without any nucleic acid amplification steps. The detection limit was lowered to 50 cfu/mL after 5.0 h of incubation.  相似文献   

6.
Shirong Yuan  Yaqin Chai  Li Mao  Xia Yang  Yali Yuan  Huan Niu 《Talanta》2010,82(4):1468-11953
A simple and sensitive sandwich-type electrochemiluminescence immunosensor for α-1-fetoprotein (AFP) on a gold nanoparticles (nano-Au) modified glassy carbon electrode (GCE) was developed by using Ru-silica (Ru(bpy)32+-doped silica) doped Au (Ru-silica@Au) composite as labels. The primary antibody, anti-AFP was first immobilized on the gold nanoparticles modified electrode due to the covalent conjugation, then the antigen and the Ru-silica@Au composite nanoparticles labeled secondary antibody was conjugated successively to form a sandwich-type immunocomplex through the specific interaction. The surfaces of Ru-silica nanoparticles were modified via the assemble of Au nanoparticles. The prepared Ru-silica@Au composite nanoparticles own the large surface area, good biocompatibility and highly effective electrochemiluminescence properties. The morphologies of the Ru-silica@Au composite nanoparticles were investigated by using transmission electronic microscope (TEM). The Ru-silica@Au composite nanoparticles labeled anti-AFP/AFP/bovine serum albumin (BSA)/anti-AFP/nano-Au modified GCE electrode was evaluated by means of cyclic voltammetry (CV) and electrogenerated chemiluminescence (ECL). The immunosensor performed high sensitivity and wide liner for detection AFP in the range of 0.05-50 ng/mL and the limit detection was 0.03 ng/mL (defined as S/N = 3).  相似文献   

7.
The article describes the use of a fullerene (C60)‐β‐cyclodextrin conjugate, synthesized via 1,3dipolar cycloaddition, for the ultrasensitive electrochemical detection of p‐nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p‐nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p‐nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10?9 mol L?1 to 4.2×10?7 mol L?1 and the detection limit was calculated to be 1.2×10?9 mol L?1.  相似文献   

8.
《Electroanalysis》2004,16(3):224-230
The 3′‐azido‐3′‐deoxythymidine (AZT, Zidovudine) is an antiproliferative and virostatic drug widely used in human immunodeficiency virus type 1 (HIV‐1) infection treatment. With respect to side effects of high doses and a short half‐life of AZT, a fast and simple detection method for this agent could be helpful. The aim of our study was to determine AZT levels in natural samples (urine, serum, whole blood, and cell cultures, such as the HaCaT line of keratinocytes) without their mineralization and/or purification, by means of electrochemical methods using hanging mercury drop electrode (HMDE). On this electrode, AZT undergoes irreversible reduction at the peak potential near Ep?1.1 V (vs. Ag/AgCl/3 M KCl). Reduction AZT signals were measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV), square‐wave voltammetry (SWV), and constant current chronopotentiometric stripping analysis (CPSA). In phosphate buffer (pH 8) the SWV yielded the best AZT signal with the detection limit of 1 nM. The determination of AZT concentration in biological materials is affected by electroactive components, such as proteins and DNA. For monitoring the influence of these compounds, AZT reduction was performed in the presence of 10 μg/mL calf thymus ssDNA and/or 100 μg/mL bovine serum albumin. In these cases, the detection limit increased to 0.25 μM. Also studied was the AZT concentration in keratinocyte cells (HaCaT line) during cell cultivation. It has been shown that the SWV may be considered as a useful tool for the determination of AZT concentration in cell cultures, and for monitoring AZT pharmacokinetics.  相似文献   

9.
Metal organic frameworks (MOFs) have attracted extensive attention in electrochemical research fields due to their high surface area and controlled porosity. Current study is design to investigate the ECL performance of the chemically modified electrode (CME) based on the bio-MOF-1, a porous zinc-adenine framework, which loaded ruthenium complex and employed for the detection of dopamine (DA). The composite material [Ru(bpy)3]2+@bio-MOF-1 (Ru-bMOF) modified carbon glassy electrode (Ru-bMOF/GCE) exhibited an excellent ECL performance having a linear co-efficient response (R2=0.9968) for 2-(dibutyl amino) ethanol (DBAE), a classical ECL co-reactant was obtained over a concentration range of 1.0×10−9 M to 1.0×10−4 M in 0.10 M pH=6.0 phosphate buffer solution (PBS). Furthermore, DA was detected based on its inhibition effect on [Ru(bpy)3]2+/DBAE system. Compared to traditional analytical methods, this method has various advantages such as simple electrode preparation, quick response, high reproducibility (RSD<2.0 %), low limit of detection (LOD=1.0×10−10 mol/L). This chemical investigated modified electrode had exploited potential for detection of DA.  相似文献   

10.
In the present paper, the electrochemical reduction of nitrite at a hemoglobin modified pencil lead electrode (Hb/PLE) is described. The electrochemical properties of nitrite were studied by cyclic voltammetry and chronoamperometry. Results showed that the hemoglobin film has an excellent electrochemical activity towards the reduction of nitrite. By using voltammetric and chronoamperometric methods, α, nα and n were calculated. Then the ability of the electrode for nitrite determination was investigated using differential pulse voltammetry. The electrocatalytic reduction peak currents were found to be linear with the nitrite concentration in the range from 10 to 220 µM with a detection limit of 5 µM. The relative standard deviation is 2 % for 3 successive determinations of a 100 µM nitrite solution. This modified electrode was successfully used for the detection of low amounts of NO2? in spinach sample and a spiked sample of tap water.  相似文献   

11.
A surface‐renewable tris(1, 10‐phenanthroline‐5, 6‐dione) iron (D) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD‐modified electrode presented pH‐dependent voltammetric behavior, and its peak currents were diffusion‐controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0.4). In the presence of iodate, dear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 × 10?6–1 × 10?2 mol/L, 7.448 μA·L/ mmol, 1.2 × 10?6 mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface‐renewal by simple mechanical polishing.  相似文献   

12.
《中国化学会会志》2018,65(5):603-612
In this work, the electrochemical oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with (N‐5‐methoxysalicylaldehyde, N´‐2‐hydroxyacetophenon‐1, 2 phenylenediimino nickel(II) complex (Ni(II)–MHP) and reduced graphene oxide (RGO), which is named Ni(II)‐MHP/RGO/CPE, in an alkaline solution. This modified electrode was found to be efficient for the oxidation of methanol. It was found that methanol was oxidized by the NiOOH groups generated by further electrochemical oxidation of nickel(II) hydroxide on the surface of the modified electrode. Under optimum conditions, some parameters of the analyte (MeOH), such as the electron transfer coefficient (α), the electron transfer rate constant) ks), and the diffusion coefficient of species in a 0.1 M solution (pH = 13), were determined. The designed sensor showed a linear dynamic range of 2.0–100.0 and 100.0–1000.0 μM and a detection limit of 0.68 μM for MeOH determination. The Ni(II)‐MHP/RGO/CPE sensor was used in the determination of MeOH in a real sample.  相似文献   

13.
The electrochemical reduction of three common insecticides such as cypermethrin (CYP), deltamethrin (DEL) and fenvalerate (FEN) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNT‐GCE), polyaniline (herein called as modifier M1) and polypyrrole (herein called as modifier M2) deposited MWCNT/GCE using cyclic voltammetry. Influences of pH, scan rate, and concentration were studied. The surface morphology of the modified film was characterized by scanning electron microscopy (SEM) and X‐ray diffraction analysis (XRD). A systematic study of the experimental parameters that affect differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived at. The calibration plots were linear over the insecticide's concentration range 0.1–100 mg L?1 and 0.05–100 mg L?1 for all the three insecticides at MWCNT‐GCE and MWCNT(M1)‐GCE respectively. The MWCNT(M2)‐GCE performed well among the three electrode systems and the determination range obtained was 0.01–100 mg L?1 for CYP, DEL and FEN. The limit of detection (LOD) was 0.35 μg L?1, 0.9 μg L?1 and 0.1 μg L?1 for CYP, DEL and FEN respectively on MWCNT(M2)‐GCE modified system. Suitability of this method for the trace determination of insecticide in spiked soil sample was also determined.  相似文献   

14.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

15.
For the first time, the electrochemical oxygen reduction reaction (ORR), was investigated using cyclic voltammetry (CV) on the electrodeposited manganese oxide (MnO x )-modified glassy carbon (MnO x -GC) electrode in the room temperature ionic liquids (RTILs) of EMIBF4, i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4). The results demonstrated that, after being modified by MnO x on a GC electrode, the reduction peak current of oxygen was increased to some extent, while the oxidation peak current, corresponding to the oxidation of superoxide anion, i.e., O2 was attenuated in some degree, suggesting that MnO x could catalyze ORR in RTILs of EMIBF4, which is consistent with the results obtained in aqueous solution. To accelerate the electron transfer rate, multi-walled carbon nanotubes (MWCNTs) was modified the GC electrode, and then MnO x was electrodeposited onto the MWCNTs-modified GC electrode to give rise to a MnO x /MWCNTs-modified GC electrode, consequently, the improved standard rate constant, ks, originated from the modified MWCNTs, along with the modification of electrodeposited MnO x , showed us a satisfactory electrocatalysis for ORR in RTILs of EMIBF4. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 3, pp. 340–345. The article is published in the original.  相似文献   

16.
A novel electrochemiluminescence (ECL) sandwich-type immunosensor for human immunoglobulin G (hIgG) on a gold nanoparticle modified electrode was developed by using N-(aminobutyl)-N-ethylisoluminol (ABEI) labeling. The primary antibody, goat-anti-human IgG was first immobilized on a gold nanoparticle modified electrode, then the antigen (human IgG) and the ABEI-labeled second antibody was conjugated successively to form a sandwich-type immunocomplex. ECL was carried out with a double-step potential in carbonate buffer solution (CBS) containing 1.5 mM H2O2. The ECL intensity increased linearly with the concentration of hIgG over the range 5.0-100 ng/mL. The limit of detection was 1.68 ng/mL (S/N = 3). The relative standard deviation was 3.79% at 60 ng/mL (n = 9). The present immunosensor is simple and sensitive. It has been successfully applied to the detection of hIgG in human serums.  相似文献   

17.
Poly(o‐anisidine) (POA) was formed by successive cyclic voltammetry in monomer solution containing sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed. The capability of this modified electrode for catalytic oxidation of folic acid was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for folic acid oxidation were calculated. The catalytic oxidation peak current of folic acid was linearly dependent on its concentration and a linear calibration curve was obtained in the range of 0.1 to 5 mM with a correlation coefficient of 0.9994. The limit of detection (3σ) was determined as 0.091 mM. This electrocatalytic oxidation was used as simple, selective and precise voltammetric method for determination of folic acid in pharmaceutical preparations.  相似文献   

18.
A novel amperometric immunosensor based on L ‐cysteine/nanosized Prussian blue bilayer films ({NPB/L ‐cys}2) and gold nanoparticles (nano‐Au) was fabricated for determination of human chorionic gonadotrophin (HCG). First, L ‐cys and NPB was self‐assembled by layer‐by‐layer (LBL) technology to form {NPB/L ‐cys}2 bilayer films on the gold electrode. Subsequently, nano‐Au layer was immobilized on the {NPB/L ‐cys}2 bilayer films by electrodepositing gold chloride tetrahydrate and then anti‐HCG was assembly on the nano‐Au layer. Finally hemoglobin (Hb) was employed to block sites against nonspecific binding. With the electrocatalytic ability of Hb and NPB for the reduction of H2O2, the current signal of the antigen‐antibody reaction was amplified and the enhanced sensitivity was achieved. In this study, the assembly process and performance of the immunosensor were characterized by cyclic voltammetry (CV) and the morphology was researched by scanning electron microscopy (SEM). The immunosensor performed a high sensitivity and a wide linear response to HCG in two ranges from 0.5 to 10 mIU/mL and from 10 to 200 mIU/mL with a relatively low detection limit of 0.2 mIU/mL at 3 times the background noise, as well as good stability and long‐term life.  相似文献   

19.
《Electroanalysis》2017,29(12):2818-2831
Immobilization of biomolecules with a proper orientation is considered as a basis for diverse biotechnological applications. Herein, we report a host‐guest inclusion complexation between β‐cyclodextrin (β‐CD) and biotin as a versatile approach for the immobilization of biomolecules. As a practical application, a sandwich‐type electrochemical immunosensor was designed for the determination of prostate specific antigen (PSA). The immunosensor was fabricated by in situ electropolymerization of poly(N‐acetylaniline) onto a rGO‐modified Pt electrode. Then, β‐CD was covalently grafted onto the over‐oxidized polymer backbone. For improving the efficiency of the assay, AuNPs were casted on the polymeric film, on the surface of which thionine (TH) as an electron mediator was covalently immobilized. Using a host‐guest inclusion complexation between β‐CD and biotin, a β‐CD/biotin‐Ab1/PSA/Ab2‐horseradish peroxidase (HRP) sandwich was formed on the electrode surface. The analytical signal was produced via electrochemical reduction of THox, generated by biocatalytic oxidation of the THred in the presence of HRP/H2O2. Under optimal conditions, the proposed sensor responded linearly to PSA in the range from 10.0 pg mL−1 to 25.0 ng mL−1, with a low detection limit of 6.7 pg mL−1 (S/N=3). Kinetic parameters of the interaction of β‐CD with Ab1 were also investigated. Finally, the applicability of the immunosensor was successfully investigated for the detection of PSA in human serum samples.  相似文献   

20.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号