首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The USM-θmodel of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θmodel in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θmodel has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θmodel was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.  相似文献   

2.
A supersonic dusty gas flow over a blunt body is considered. The mathematical model of the two-phase gas–particle flow takes into account the inter-particle collisions and the two-way coupling effects. The carrier gas is treated as a continuum, the averaged flow field of which is described by the complete Navier–Stokes equations with additional source terms modeling the reverse action of the dispersed phase. The dispersed phase is treated as a discrete set of solid particles, and its behavior is described by a kinetic Boltzmann-type equation. Particles impinging on the body surface are assumed to bounce from it. Numerical analysis is carried out for the cross-wise flow over a cylinder. The method of computational simulation represents a combination of a CFD-method for the carrier gas and a Monte Carlo method for the “gas” of particles. The dependence of the fine flow structure of the continuous and dispersed phases upon the free stream particle volume fraction αp∞ and the particle radius rp is investigated, particularly in the shock layer and in the boundary layer at the body surface. The particle volume fraction αp∞ is varied from a negligibly low value to the value αp∞ = 3 × 105 at which inter-particle collisions and two-way coupling effects are simultaneously essential. Particular attention has been given to the particles of radii close to the critical value rp1, because in this range of particle size the behavior of the particles and their effect on the carrier gas flow are not yet completely understood. An estimate of the turbulent kinetic energy produced by the particles in the shock layer is obtained.  相似文献   

3.
A numerical calculation is carried out by the finite-difference method based on proposed equations for a turbulent submerged jet containing an admixture of solid particles. The relative longitudinal particle velocity and the influence of particles on the turbulence intensity are taken into account. The calculated results adequately agree with available experimental data. A turbulent two-phase jet is examined in [1] on the basis of the theory for a variable density jet, assuming equal mean velocities for the gas and particles and not considering the influence of particles on the turbulence intensity. Particles are analogously taken into account by a noninertial gas mixture in [2, 3], and a particle Schmidt number of 1.1 is assumed in [4]. A model is proposed in [5] which takes into account the influence of particles on the turbulence intensity of the gas phase. Problems concerning the initial and main sections of a submerged jet were solved in [6] by the integral method on the basis of this model and the assumed equality of the mean velocities of the gas and particles. Turbulent mixing of homogeneous two-phase flows with allowance made for dynamic nonequilibrium of the phases is considered in [7]. However, the neglect of turbulent transfer of particle mass and momentum led to a physically unrealistic solution for the particle concentration in the far field of the mixture. A two-phase jet is considered in the present work on the basis of the theory of a two-velocity continuous medium [8, 9] with allowance made for turbulent transfer of particle mass and momentum. The influence of particles on the turbulence intensity of the gas phase is taken into account with the model of [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 57–63, September–October, 1976.The author acknowledges useful comments and discussion.of the work by G. N. Abramovich and participants of his seminar. The author sincerely thanks I. N. Murzinov for scientific supervision of the work.  相似文献   

4.
在气粒两相湍流的双流体模型中,颗粒相的视(表观)密度是有脉动的,在时平均的统一二阶矩(USM)模型中出现了和颗粒数密度或视密度脉动有关的项和方程,使模型方程比较复杂。实际上,用LDV或PDPA测量的流体(用小颗粒代表)和颗粒速度都是颗粒数加权平均的结果。因此,在视密度加权平均基础上推导两相湍流模型更为合理。通过推导和封闭了视密度加权平均的统一二阶矩模型(MUSM)方程组,改进了两相速度脉动关联的封闭,并引入了颗粒遇到的气体脉动速度及其输运方程。MUSM模型可以减少所用方程数,节省计算量。视密度加权平均的统一二阶矩两相湍流模型是一种对原有时间平均的统一二阶矩模型和改进和发展。  相似文献   

5.
A numerical study based on the Eulerian–Lagrangian formulation is performed for dispersed phase motion in a turbulent flow. The effect of spatial filtering, commonly employed in large-eddy simulations, and the role of the subgrid scale turbulence on the statistics of heavy particles, including preferential concentration, are studied through a priori analysis of DNS of particle-laden forced isotropic turbulence. In simulations where the subgrid scale kinetic energy attains 30–35% of the total we observe the impact of residual fluid motions on particles of a smaller inertia. It is shown that neglecting the influence of subgrid scale fluctuations has a significant effect on the preferential concentration of those particles. A stochastic Langevin model is proposed to reconstruct the residual (or subgrid scale) fluid velocity along particle trajectories. The computation results for a selection of particle inertia parameters are performed to appraise the model through comparisons of particle turbulent kinetic energy and the statistics of preferential concentrations.  相似文献   

6.
Prediction of the particle-laden jet with a two-equation turbulence model   总被引:2,自引:0,他引:2  
A two-equation turbulence model for two-phase flows has recently been proposed by Elghobashi & Abou-Arab (1983). They derived the exact equations of the kinetic energy of turbulence and the rate of dissipation of that energy, and modeled the turbulent correlations, resulting from time-averaging, up to third order. In order to validate the proposed model, a turbulent axisymmetric gaseous jet laden with spherical uniform-size solid particles is studied here. The predictions of the mean flow properties of the two-phases and the turbulence kinetic energy and shear stress of the carrier phase show good agreement with the experimental data.  相似文献   

7.
Dispersion of spray droplets and the modulation of turbulence in the ambient gas by the dispersing droplets are two coupled phenomena that are closely linked to the evolution of global spray characteristics, such as the spreading rate of the spray and the spray cone angle. Direct numerical simulations (DNS) of turbulent gas flows laden with sub-Kolmogorov size particles, in the absence of gravity, report that dispersion statistics and turbulent kinetic energy (TKE) evolve on different timescales. Furthermore, each timescale behaves differently with Stokes number, a non-dimensional flow parameter (defined in this context as the ratio of the particle response time to the Kolmogorov timescale of turbulence) that characterizes how quickly a particle responds to turbulent fluctuations in the carrier or gas phase. A new dual-timescale Langevin model (DLM) composed of two coupled Langevin equations for the fluctuating velocities, one for each phase, is proposed. This model possesses a unique feature that the implied TKE and velocity autocorrelation in each phase evolve on different timescales. Consequently, this model has the capability of simultaneously predicting the disparate Stokes number trends in the evolution of dispersion statistics, such as velocity autocorrelations, and TKE in each phase. Predictions of dispersion statistics and TKE from the new model show good agreement with published DNS of non-evaporating and evaporating droplet-laden turbulent flow.  相似文献   

8.
Dynamic equations have been obtained for the two-point double correlations of the fluctuation velocities of a fluid and the particles suspended in it at low volume concentrations of the solid phase. In the case of uniform isotropic turbulence these equations can be considerably simplified. The final period of decay of isotropic turbulence has been studied in detail. At this stage in the case of high-inertia particles the inhomogeneous-fluid turbulence is similar to the turbulence of a homogeneous fluid (without particles) in the sense that the presence of the particles affects only the fluctuation energy but leaves unchanged the spatial scales of turbulence and the spatial energy spectrum function. The suspended particles lead to exponential damping of the turbulent pulsations.Little theoretical information is available on the hydrodynamics of a suspension of fine particles in a turbulent liquid or gas. Research has been mainly confined to the behavior of the individual particles in a given turbulence field [1]. The problem of the turbulent motion of the mixture as a whole has been examined by Barenblatt [2], who derived the equations of motion of the mixture, using Kolmogorov's hypothesis to close them. Hinze [3] has also attempted to derive equations for turbulent pulsations of the mixture. However, as Murray showed [4], Hinze' s equations contradict Newton' s third law.The effect of suspended particles on the turbulence of a two-phase flow is governed by the noncorrespondence of the local velocities of the particles and the medium. The forces of resistance to the motion of the particles relative to the fluid lead to additional dissipation of fluctuation energy and decay of turbulence [2]. On the other hand, if the averaged velocities of particles and medium do not correspond, the suspended particles may also have a destabilizing effect [5, 6], causing energy transfer from the averaged to the pulsating motion. Below we shall consider the case where the averaged velocities of the two phases coincide, i.e., we shall deal only with the first of the two above-mentioned effects.The authors thank G.I. Barenblatt for his useful advice.  相似文献   

9.
Numerical modeling of a complete powder coating process is carried out to understand the gas-particle two-phase flow field inside a powder coating booth and results of the numerical simulations are compared with experimental data to validate the numerical results. The flow inside the coating booth is modeled as a three-dimensional turbulent continuous gas flow with solid powder particles as a discrete phase. The continuous gas flow is predicted by solving Navier–Stokes equations using a standard kε turbulence model with non-equilibrium wall functions. The discrete phase is modeled based on a Lagrangian approach. In the calculation of particle propagation, a particle size distribution obtained through experiments is applied. The electrostatic field, including the effect of space charge due to free ions, is calculated with the use of the user defined scalar transport equations and user defined scalar functions in the software package, FLUENT, for the electrostatic potential and charge density.  相似文献   

10.
We study the dynamics of gas–liquid flows experimentally and computationally in a rectangular bubble column where the gas source is introduced at the corner. The flow in this reactor is complex and inherently unsteady in nature. The two-dimensional liquid phase velocity field is calculated by an Eulerian approach solving the unsteady Reynolds Averaged Navier Stokes equations. The conservation equations are closed using a two parameter turbulence model. The two-way coupling was accounted for by adding source terms in the conservation equations of the continuous phase to take into account the interaction with the dispersed phase. Bubble tracking is achieved through a Lagrangian approach. Here the equations of motion are solved taking into account the drag, pressure, buoyancy and gravity forces. The time-averaged flows along with the variables which characterize turbulence are analyzed for a wide range of gas flow-rates using Euler–Lagrangian simulations. These simulation predictions are validated with Euler–Eulerian simulations where the gas-phase distribution is captured as a void fraction and PIV experiments. The motion of bubbles induces turbulence in the flow. The applicability of two parameter models for turbulence like the standard kε model on time-averaged flow properties is addressed. From the results of the time averaged velocity field, turbulence intensity, turbulent viscosity and gas hold-up profiles, it is concluded that the Euler–Lagrangian model is applicable at lower gas flow-rates. The Euler–Eulerian approach was found to be valid at lower as well as higher gas flow-rates.  相似文献   

11.
Large-eddy simulations (LES) of a vertical turbulent channel flow laden with a very large number of solid particles are performed. The motivation for this research is to get insight into fundamental aspects of co-current turbulent gas-particle flows, as encountered in riser reactors. The particle volume fraction equals about 1.3%, which is relatively high in the context of modern LES of two-phase flows. The channel flow simulations are based on large-eddy approximations of the compressible Navier–Stokes equations in a porous medium. The Euler–Lagrangian method is adopted, which means that for each individual particle an equation of motion is solved. The method incorporates four-way coupling, i.e., both the particle-fluid and particle–particle interactions are taken into account. The results are compared to single-phase channel flow in order to investigate the effect of the particles on turbulent statistics. The present results show that due to particle–fluid interactions the mean fluid profile is flattened and the boundary layer is thinner. Compared to single-phase turbulent flow, the streamwise turbulence intensity of the gas phase is increased, while the normal and spanwise turbulence intensities are reduced. This finding is generally consistent with existing experimental data. The four-way coupled simulations are also compared with two-way coupled simulations, in which the inelastic collisions between particles are neglected. The latter comparison clearly demonstrates that the collisions have a large influence on the main statistics of both phases. In addition, the four-way coupled simulations contain stronger coherent particle structures. It is thus essential to include the particle–particle interactions in numerical simulations of two-phase flow with volume fractions around one percent.  相似文献   

12.
This paper presents a review of authors' collective works in the field of two-phase flow modeling done in the past few decades. The paper is aimed at the construction of mathematical models for simulation of particle-laden turbulent flows. A kinetic equation was obtained for the probability density function (PDF) of the particle velocity distribution in turbulent flows. The proposed kinetic equation describes both the interaction of particles with turbulent eddies of the carrier phase and particle-particle collisions. This PDF equation is used for the derivation of different schemes describing turbulent momentum transfer in the dispersed particle phase. The turbulent characteristics of the gaseous phase are calculated on the basis of the k - turbulence model with a modulation effect of particles on the turbulence.

The constructed models have been applied to the calculation of various two-phase gas-particle turbulent flows in jets and channels as well as particle deposition in tubes and separators. For validating the theoretical and numerical results, a wide range of comparisons with experimental data from Russian and foreign sources has been done.  相似文献   


13.
The present work aims to investigate numerically the flowfield and heat transfer process in gas-solid suspension in a vertical pneumatic conveying pipe. The Eulerian-Lagrangian model is used to simulate the flow of the two-phases. The gas phase is simulated based on Reynolds Average Navier-Stokes equations (RANS) with low Reynolds number k-ε model, while particle tracking procedure is used for the solid phase. An anisotropic model is used to calculate the Reynolds stresses and the turbulent Prandtl number is calculated as a function of the turbulent viscosity. The model takes into account the lift and drag forces and the effect of particle rotation as well as the particles dispersion by turbulence effect. The effects of inter-particles collisions and turbulence modulation by the solid particles, i.e. four-way coupling, are also included in the model. Comparisons between different models for turbulence modulation with experimental data are carried out to select the best model. The model is validated against published experimental data for velocities of the two phases, turbulence intensity, solids concentration, pressure drop, heat transfer rates and Nusselt number distribution. The comparisons indicate that the present model is able to predict the complex interaction between the two phases in non-isothermal gas-solid flow in the tested range. The results indicate that the particle-particle collision, turbulence dispersion and lift force play a key role in the concentration distribution. In addition, the heat transfer rate increases as the mass loading ratio increases and Nusselt number increases as the pipe diameter increases.  相似文献   

14.
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and ε equations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.  相似文献   

15.
16.
The present work is concerned with the interaction between large particles and gas phase turbulence. Gas turbulence modulation in these systems is considered to be dominated by a generation mechanism which arises due to the presence of wakes behind particles. Following a recent proposal, a closure for gas turbulence modulation accounting for the effect of wakes is employed within the context of a mathematical model for particle-laden, turbulent flows. The model accounts for particle particle and particle-wall interactions associated with larger particles based on concepts from gas kinetic theory. It is shown that due to the significant flattening of the mean gas velocity profile with the addition of particles, and the corresponding decrease in turbulent energy production, a generation mechanism must be present in order to produce gas velocity fluctuation predictions which are consistent with the experimental measurements, even in the case where the experimental results indicate a net suppression of gas phase turbulence in the presence of particles.  相似文献   

17.
A particle nonlinear two-scale turbulence model is proposed for simulating the anisotropic turbulent two-phase flow. The particle kinetic energy equation for two-scale fluctuation, particle energy transfer rate equation for large-scale fluctuation, and particle turbulent kinetic energy dissipation rate equation for small-scale fluctuation are derived and closed. This model is used to simulate gas–particle flows in a sudden-expansion chamber. The simulation is compared with the experiment and with those obtained by using another two kinds of tow-phase turbulence model, such as the single-scale two-phase turbulence model and the particle two-scale second-order moment (USM) two-phase turbulence model. It is shown that the present model gives simulation in much better agreement with the experiment than the single-scale two-phase turbulence model does and is almost as good as the particle two-scale USM turbulence model. The project supported by China Postdoctoral Science Foundation (2004036239).  相似文献   

18.
Two methods for coupling the Reynolds‐averaged Navier–Stokes equations with the qω turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier–Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds‐averaged Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization‐alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two‐ and three‐dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The purpose of this paper is to present and compare two statistical models for predicting the effect of collisions on particle velocities and stresses in bidisperse turbulent flows. These models start from a kinetic equation for the probability density function (PDF) of the particle velocity distribution in a homogeneous anisotropic turbulent flow. The kinetic equation describes simultaneously particle–turbulence and particle–particle interactions. The paper is focused on deriving the collision terms in the governing equations of the PDF moments. One of the collision models is based on a Grad-like expansion for the PDF of the velocity distributions of two particles. The other model stems from a Grad-like expansion for the joint fluid–particle PDF. The validity of these models is explored by comparing with Lagrangian simulations of particle tracking in uniformly sheared and isotropic turbulent flows generated by LES. Notwithstanding the fact that the fluid turbulence may be isotropic, the particle velocity fluctuations are anisotropic due to the impact of gravitational settling. Comparisons of the model predictions and the numerical simulations show encouraging agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号