首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[reaction: see text] Sequences of lithiation-substitution, enantioselective hydrogenation, and diastereoselective lithiation-substitution provide efficient highly enantioselective syntheses of 2-substituted and cis and trans 2,6-disubstituted piperidines. The methodology is demonstrated by syntheses of (-)-coniine, (-)-solenopsin A, and (-)-dihydropinidine as their hydrochlorides.  相似文献   

2.
A conceptually new approach to the enantiocontrolled synthesis of 2,6-disubstituted piperidines was achieved by desymmetrization of meso-2,6-dimethoxy-eta-(3,4,5)-dihydropyridinylmolybdenum complexes. After protection of the piperidine nitrogen as a urethane derived from (+)- or (-)-trans-2-(alpha-cumyl)cyclohexyl (TCC), a sequential, one-pot methoxide abstraction/nucleophilic addition/methoxide abstraction/nucleophilic addition generated good yields of 2,6-disubstituted-eta-(3,4,5)-dihydropyridinylmolybdenum complexes. This sequence proceeds by way of a highly diastereoselective methoxide abstraction (>40:1). High yielding protodemetalation and N-deprotection provided a simple and enantiocontrolled synthetic entry to a variety of 2,6-disubstituted piperidines. This new method was used for the total synthesis of (-)-dihydropinidine and (-)-andrachcinidine.  相似文献   

3.
A new pentadentate ligand, alpha,alpha,alpha',alpha'-tetra(pyrazolyl)lutidine, pz 4lut, has been prepared by a CoCl 2-catalyzed rearrangement reaction between 2,6-pyridinedicarboxaldehyde and dipyrazolylthione. The coordination chemistry with some divalent first-row transition metal (Mn, Fe, Co, Ni, Cu, and Zn) chlorides has been explored. The electronic properties indicate that the new kappa (5)N ligand is a slightly stronger-field donor to Ni (2+) and Co (2+) than a related pentadentate ligand with five pyridyl donors presumably because of greater interaction between the metal and axial pyridyl.  相似文献   

4.
《Tetrahedron: Asymmetry》1999,10(11):2225-2235
A highly diastereoselective intramolecular Mannich reaction involving enantiopure α-methylamine 7 and achiral aldehydes is employed to prepare enantiomerically pure 2,6-cis-disubstituted piperidines. This methodology provides an efficient and selective route to 2,6-cis-disubstituted piperidines, 2,6-cis-disubstituted 4-piperidones and 2,6-cis-disubstituted 4-piperidinols.  相似文献   

5.
Davis FA  Rao A  Carroll PJ 《Organic letters》2003,5(21):3855-3857
[reaction: see text] The hydroxy-directed reduction of 1,2-dehydropiperidines with the "ate" complex of DIBAL-H and n-BuLi affords functionalized trans-2,6-disubstituted piperidines. This methodology was employed in the asymmetric synthesis of the quinolizidine alkaloid (-)-lasubine I.  相似文献   

6.
2,6-diacetylpyridinediphenylhydrazone perchlorate was prepared and characterized by spectroscopic (IR, ESI–MS, UV–Vis, 1H NMR) and analytical data and its crystal structure was determined by single X-ray analysis. The lanthanum(III), praseodymium(III), and neodymium(III) perchlorate complexes of 2,6-diacetylpyridinediphenylhydrazone were prepared in a direct reaction of the ligand with appropriate metal perchlorates. The spectroscopic and analytical data indicate 1:2 metal to ligand stoichiometry. In all the complexes the hydrazones act as monodeprotonated terdentate NNN donor chelators. The same lanthanum(III) complex was also obtained in a one-step condensation reaction between 2,6-diacetylpyridine and phenylhydrazine in the presence of lanthanum(III) perchlorate.  相似文献   

7.
The methyl esters of (L)-phenylalanine and (L)-methionine underwent conjugate additions via their free amino groups to 1-(p-toluenesulfonyl)hexyne, followed by intramolecular acylation of the corresponding enamide anions and tautomerization to afford 2-benzyl-5-n-butyl-3-hydroxy-4-(p-toluenesulfonyl)pyrrole and 5-n-butyl-3-hydroxy-2-(2-methylthioethyl)-4-(p-toluenesulfonyl)pyr role, respectively. The conjugate additions of a series of acyclic and cyclic secondary beta- and gamma-chloroamines to acetylenic sulfones proceeded similarly under mild conditions. The resulting adducts were deprotonated with LDA in THF at -78 degrees C, and the resulting sulfone-stabilized carbanions underwent intramolecular alkylation to afford cyclic enamine sulfones. Thus, acyclic gamma-chloroalkyl-benzylamines afforded the corresponding 2- or 2,6-disubstituted piperidines, while 2-(chloromethyl)pyrrolidines, 2-(2-chloroethyl)pyrrolidines, 2-(chloromethyl)piperidines, and 2-(2-chloroethyl)piperidines produced the corresponding 3-substituted pyrrolizidines, 5- or 3-substituted indolizidines, and 4-substituted quinolizidines, respectively. 8-Methyl-5-substituted indolizidines were also prepared from the appropriate methyl-substituted chloroamine precursor. Enantioselective syntheses were achieved by employing chiral chloroamines derived from amino acids or other enantiopure precursors. Further transformations of several of the products provided concise syntheses of four dendrobatid alkaloids. Thus, reduction of (8aS)-5-n-propyl-6-(p-toluenesulfonyl)-delta5,6-indolizidine with sodium cyanoborohydride in trifluoroacetic acid, followed by reductive desulfonylation, afforded (-)-indolizidine 167B. The corresponding 5-n-hexyl derivative similarly produced (-)-indolizidine 209D, while (-)-(8R, 8aS)-8-methyl-5-n-pentyl-6-(p-toluenesulfonyl)-delta5,6-indo lizidine furnished (-)-indolizidine 209B. Finally, the similar reduction and debenzylation of (-)-(8R,8aS)-5-(2-benzyloxyethyl)-8-methyl-6-(p-toluenesulfo nyl)-delta5,6-indolizidine produced the corresponding 5-hydroxyethyl indolizidine. This was subjected to chlorination of the alcohol group with thionyl chloride and substitution with a higher order allyl cuprate reagent to afford (-)-indolizidine 207A.  相似文献   

8.
Enantiopure TpMo(CO)2(pyridinyl) complexes were prepared using an efficient and scalable enzymatic kinetic resolution of the precursor to the molybdenum complex. A single TpMo(CO)2(pyridinyl) complex can function as a chiral scaffold for the enantiocontrolled synthesis of either 2,3,6-cis- or 2,6-cis-3-trans-trisubstituted piperidines. The synthetic potential of this methodology was demonstrated by a total synthesis of (-)-indolizidine 209B.  相似文献   

9.
The reaction of di(tert-butyl) derivatives of pyrocatechol with 2,6-dihydroxyaniline afforded 2,4,6,8-tetra(tert-butyl)-9-hydroxyphenoxazin-1-one. The chemical properties of the reaction product and its ability to form complexes with metal salts as the tridentate ligand were investigated. The structure of hydroxyphenoxazinone was established by X-ray diffraction.  相似文献   

10.
Singh OV  Han H 《Organic letters》2004,6(18):3067-3070
[reaction: see text] Hg(II)-mediated tandem Overman rearrangement and intramolecular amidomercuration reactions were proven to provide a convenient tool for the stereoselective synthesis of cis- and trans-2,6-disubstituted piperidines. Thus, upon treatment with Hg(OTFA)(2) in THF, the trichloroacetimidate 1 directly transformed into the 2,6-dialkyl piperidine 2 with almost exclusive trans selectivity. The amiodomercuration reaction of the carbamate 7 by Hg(OTFA)(2) in nitromethane showed an excellent cis selectivity. Also reported is the stereoselective synthesis of solenopsin A and isosolenopsin A.  相似文献   

11.
A series of group 13 metal complexes featuring the beta-diketiminate ligand [[(C(6)H(3)-2,6-i-Pr(2))NC(Me)](2)CH](-) (i.e., [Dipp(2)nacnac](-), Dipp = C(6)H(3)-2,6-i-Pr(2)) have been prepared and spectroscopically and structurally characterized. The chloride derivatives Dipp(2)nacnacMCl(2) (M = Al (3), Ga (5), In (8)) were isolated in good yield by the reaction of 1 equiv of Dipp(2)nacnacLi.Et(2)O (2) and the respective metal halides. The iodide derivatives Dipp(2)nacnacMI(2) (M = Al (4), Ga (6), In (9)), which are useful for reduction to afford M(I) species, were made by a variety of routes. Thus, 4 was obtained by treatment of the previously reported Dipp(2)nacnacAlMe(2) with I(2), whereas the gallium analogue 6 was obtained as a product of the reaction of "GaI" with Dipp(2)nacnacLi.Et(2)O, and 9 was obtained by direct reaction of InI(3) and the lithium salt. The methyl derivatives Dipp(2)nacnacMMe(2) (M = Ga (7), In (10)), which are analogous to the previously reported Dipp(2)nacnacAlMe(2), were synthesized by the reaction of GaMe(3) with Dipp(2)nacnacH (1) or by reaction of the indium chloride derivative 8 with 2 equiv of MeMgBr in diethyl ether. The compounds 3-10 exist as colorless, air- and moisture-sensitive crystalline solids. Their X-ray crystal structures feature nearly planar C(3)N(2) arrays in the Dipp(2)nacnac ligand backbone with short C-C and C-N distances that are consistent with a delocalized structure. However, there are large dihedral angles between the C(3)N(2) plane and the N(2)M metal coordination plane which have been attributed mainly to steric effects. The relatively short M-N distances are consistent with the coordination numbers of the metals and the normal/dative character of the nitrogen ligands. The compounds were also characterized by (1)H and (13)C NMR spectroscopy. (1)H NMR data for 7 revealed equivalent methyl groups whereas the spectrum of 10 displayed two In-Me signals which indicated that ring wagging was slow on the (1)H NMR time scale.  相似文献   

12.
2,6-diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X2 and [Ni(L)X]X compositions (where L=ligand and X=NO3-, Cl- and CH3COO-) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.  相似文献   

13.
A series of rhodium complexes, [Rh(cod)(NHC-F(x))(OH(2))] (cod = 1,5-cyclooctadiene; NHC = N-heterocyclic carbene), incorporating anionic N-heterocyclic carbenes with 2-tert-butylmalonyl backbones and 2,6-dimethylphenyl (x = 0), 2,6-difluorophenyl (x = 4), 2,4,6-trifluorophenyl (x = 6), and pentafluorophenyl (x = 10) N,N'-substituents, respectively, has been prepared by deprotonation of the corresponding zwitterionic precursors with potassium hexamethyldisilazide, followed by immediate reaction of the resulting potassium salts with [{RhCl(cod)}(2)]. These complexes could be converted to the related carbonyl derivatives [Rh(CO)(2)(NHC-F(x))(OH(2))] by displacement of the COD ligand with CO. IR and NMR spectroscopy demonstrated that the degree of fluorination of the N-aryl substituents has a considerable influence on the σ-donating and π-accepting properties of the carbene ligands and could be effectively used to tune the electronic properties of the metal center. The carbonyl groups on the carbene ligand backbone provided a particularly sensitive probe for the assessment of the metal-to-ligand π donation. The ortho-fluorine substituents on the N-aryl groups in the carbene ligands interacted with the other ligands on rhodium, determining the conformation of the complexes and creating a pocket suitable for the coordination of water to the metal center. Computational studies were used to explain the influence of the fluorinated N-substituents on the electronic properties of the ligand and evaluate the relative contribution of the σ- and π-interactions to the ligand-metal interaction.  相似文献   

14.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

15.
Molecular catalysts for organic synthesis should be constructed to be tailored to target reactions and their desirable conditions. In our search for them, we have studied new types of transition metal molecular catalysts dressed with a tridentate N,C,N modular ligand, which consists of a C2-symmetric side-by-side phenyl group with chiral bis(oxazolinyl) substituents. The ligand, 2,6-bis(oxazolinyl)phenyl abbreviated as Phebox, can connect covalently to transition metals by the central carbon atom. Here, we review our recent work on the chemistry of Phebox and its metal complexes, including preparation, structural analysis, asymmetric Lewis acid catalysis, asymmetric hydrosilylation, asymmetric conjugate reduction, asymmetric reductive aldol reaction, and organometallic reactions.  相似文献   

16.
As part of a study of atom-transfer radical polymerization (ATRP) catalysts, four new copper(I) and -(II) compounds of a new monoanionic, tripodal tetradentate ligand, N-(2,6-diisopropylphenyl)-3-[bis(2-pyridylmethyl)amino]propanamide (DIPMAP), were prepared. Ligand synthesis followed from the addition-elimination reaction of 2,6-diisopropylaniline with acryloyl chloride and then a Lewis acid catalyzed Michael addition of bis(2-pyridylmethyl)amine to this product. The ligand was complexed to CuCl to yield monomeric Cu(DIPMAP)Cl featuring an intramolecular hydrogen bond between the free amide hydrogen and the coordinated chloride ligand. Deprotonation of the amide hydrogen in Cu(DIPMAP)Cl using n-BuLi led to the incorporation of LiCl in the resulting product, Li2Cu2(DIPMAP)2Cl2. This complex exhibited an unusual dimeric structure, with the amine nitrogens of one ligand coordinated to a lithium ion, the amide oxygen of the same ligand bridging between the lithium ions, and the amidate nitrogen of that ligand coordinated to a CuCl unit that has a structure analogous to dihalocuprate ions. Deprotonation of Cu(DIPMAP)Cl using KOtBu yielded an alkali-metal chloride free product, Cu2(DIPMAP)2, that also exhibited a dimeric structure in which the three amine nitrogens of one ligand were coordinated to one CuI ion and the amidate nitrogen of the same ligand was coordinated to the other CuI ion. Cu2(DIPMAP)2 was effective in abstracting halogen atoms from organic halides, but in the attempted ATRP of tert-butyl acrylate, molecular weight versus conversion behavior reminiscent of a redox-initiated polymerization was observed. DIPMAP was coordinated to CuBr2 to yield [Cu(DIPMAP)Br]Br with a square-pyramidal structure. The amide hydrogen in this complex could be deprotonated using KOtBu to form complex [DIPMAP]CuBr. Spectral characterization of complex confirmed deprotonation of the ligand and that it most likely had an axially distorted trigonal-bipyramidal structure, although crystals suitable for X-ray analysis could not be obtained. Solution oxidation of Cu2(DIPMAP)2 using CBr4 yielded a product, complex, whose spectral signatures did not match those of complex. The dimeric structure of Cu2(DIPMAP)2 might be a significant contributing factor to the slow rate of deactivation observed in atom-transfer reactions using Cu2(DIPMAP)2 as the catalyst.  相似文献   

17.
Reaction of 2-bromopyridine with 2 equiv of sodium indazolide in diglyme at 140 °C affords 2,6-bis-(indazol-1-yl)pyridine and 2-(indazol-1-yl)-6-(indazol-2-yl)pyridine in purified yields of 24% and 68% respectively. A similar reaction, using 1 equiv of sodium indazolide at 70 °C, gives a low-yield mixture of 2-(indazol-1-yl)-6-bromopyridine and 2-(indazol-2-yl)-6-bromopyridine. Both these intermediates are transformed into 2-(pyrazol-1-yl)-6-(indazol-1-yl)pyridine and 2,6-di(pyrazol-1-yl)pyridine upon treatment with 1 equiv of sodium pyrazolide in diglyme at 140 °C. These observations imply that the indazolyl group is a leaving group comparable to a bromo substituent under nucleophilic attack by pyrazolide or indazolide ions under these conditions. No reaction was observed between 2-(pyrazol-1-yl)-6-bromopyridine and 1 equiv of sodium indazolide under the same conditions. A single crystal structure of its iron(II) complex confirmed the regiochemistry of 2,6-bis-(indazol-1-yl)pyridine, and revealed significant conformational flexibility in the distal ligand indazolyl groups.  相似文献   

18.
A general directed Ru-catalyzed C(sp(3) )?H α-alkylation protocol for piperidines (less-reactive substrates than the corresponding five-membered cyclic amines) has been developed. The use of a hindered alcohol (2,4-dimethyl-3-pentanol) as the solvent and catalyst activator, and a catalytic amount of trans-1,2-cyclohexanedicarboxylic acid is necessary to achieve a high conversion to product. This protocol was used to effectively synthesize a number of 2-hexyl- and 2,6-dihexyl piperidines, as well as the alkaloid (±)-solenopsin?A. Kinetic studies have revealed that the carboxylic acid additive has a significant effect on catalyst initiation, catalyst longevity, and reverses the reaction selectivity compared with the acid-free reaction (promotes alkylation versus competing alkene reduction).  相似文献   

19.
A Ni-catalyzed asymmetric ring-opening reaction of 2-substituted cyclopropane-1,1-dicarboxylates with aliphatic amines has been accomplished using the chiral indane-trisoxazoline (In-TOX) ligand. This highly enantioselective reaction provides an efficient approach to a variety of chiral γ-substituted γ-amino acid derivatives, which are readily transformed into multifunctionalized piperidines and γ-lactams. The single-crystal X-ray structure of the TOX-Ni complex is provided, and the role of the side arm in the chiral ligand is discussed.  相似文献   

20.
Complexes of transition metals have been synthesized with hexadentate ligand (2,6-bis(((2-mercaptophenyl)thio)methyl)pyridinato)metal(II). These complexes have been synthesized via the two step template reaction by using the benzene dithiol, 2,6-bis(chloro)methyl pyridine and corresponding metal salt as key raw materials. The structures of the complexes have been elucidated on the basis of elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies. All of the complexes were found to possess six-coordinated geometry and are of high spin type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号