首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In this work we study the following class of problems in \({\mathbb R^{N}, N > 2s}\)
$$\varepsilon^{2s}(-\Delta)^{s}u + V(z)u = f(u), \,\,\,u(z) > 0$$
where \({0 < s < 1}\), \({(-\Delta)^{s}}\) is the fractional Laplacian, \({\varepsilon}\) is a positive parameter, the potential \({V : \mathbb{R}^N \to \mathbb{R}}\) and the nonlinearity \({f : \mathbb R \to \mathbb R}\) satisfy suitable assumptions; in particular it is assumed that \({V}\) achieves its positive minimum on some set \({M.}\) By using variational methods we prove existence and multiplicity of positive solutions when \({\varepsilon \to 0^{+}}\). In particular the multiplicity result is obtained by means of the Ljusternick-Schnirelmann and Morse theory, by exploiting the “topological complexity” of the set \({M}\).
  相似文献   

2.
Let \({L(n)}\) be the language of group theory with n additional new constant symbols \({c_1,\ldots,c_n}\). In \({L(n)}\) we consider the class \({{\mathbb{K}}(n)}\) of all finite groups G of exponent \({p > 2}\), where \({G'\subseteq\langle c_1^G,\ldots,c_n^G\rangle \subseteq Z(G)}\) and \({c_1^G,\ldots,c_n^G}\) are linearly independent. Using amalgamation we show the existence of Fraïssé limits \({D(n)}\) of \({{\mathbb{K}}(n)}\). \({D(1)}\) is Felgner’s extra special p-group. The elementary theories of the \({D(n)}\) are supersimple of SU-rank 1. They have the independence property.  相似文献   

3.
We prove the stability of the affirmative part of the solution to the complex Busemann–Petty problem. Namely, if K and L are origin-symmetric convex bodies in \({{\mathbb C}^n}\), n = 2 or n = 3, \({\varepsilon >0 }\) and \({{\rm Vol}_{2n-2}(K\cap H) \le {\rm Vol}_{2n-2}(L \cap H) + \varepsilon}\) for any complex hyperplane H in \({{\mathbb C}^n}\) , then \({({\rm Vol}_{2n}(K))^{\frac{n-1}n}\le({\rm Vol}_{2n}(L))^{\frac{n-1}n} + \varepsilon}\) , where Vol2n is the volume in \({{\mathbb C}^n}\) , which is identified with \({{\mathbb R}^{2n}}\) in the natural way.  相似文献   

4.
Let \({{\|\cdot\|}}\) be a norm on \({\mathbb{R}^n}\) and \({\|.\|_*}\) be the dual norm. If \({\|\cdot\|}\) has a normalized 1-symmetric basis \({\{e_i\}_{i=1}^n}\) then the following inequalities hold: for all \({x,y\in \mathbb{R}^n}\), \({\|x\|\cdot\|y\|_*\le \max(\|x\|_1\cdot\|y\|_\infty,\|x\|_\infty\cdot\|y\|_1)}\) and if the basis is only 1-unconditional and normalized then for all \({x \in \mathbb{R}^n}\) , \({\|x\|+\|x\|_{*}\leq \|x\|_1+\|x\|_\infty}\) . We consider other geometric generalizations and apply these results to get, as a special case, estimates on best random embeddings of k-dimensional Hilbert spaces in the spaces of nuclear operators \({{\mathcal N}(K,K)}\) of dimension n 2, for all k = [λn 2] and 0 < λ < 1. We obtain universal upper bounds independent on the 1-symmetric norm \({\|.\|}\) for the products of pth moments
$\left( {\mathbb{E}} \left\|\sum_{i=1}^n f_i(\omega)\,e_i\right\|^p\cdot\, \mathbb {E} \left\|\sum_{i=1}^n f_i(\omega)\,e_i\right\|_*^p\right)^{1/p}$
for independent random variables {f i (ω)}, and 1 ≤ p < ∞.
  相似文献   

5.
In this work, we consider the second-order discontinuous equation in the real line,
$$u^{\prime \prime}(t)-ku(t) = f( t, u(t), u^{\prime}(t)), \quad a.e.t \in \mathbb {R},$$
with \({k > 0}\) and \({f : \mathbb{R}^{3} \rightarrow \mathbb{R}}\) an \({L^{1}}\)-Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
  相似文献   

6.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

7.
In this study, we first calculate the polar moment of inertia of orbit curves under one-parameter planar motion in the generalized complex plane \({{\mathbb{C}_p}}\) and then give the Holditch-type theorem for \({{\mathbb{C}_p}}\): When the fixed points \({X}\) and \({Y}\) on the moving plane \({{\mathbb{K}_p} \subset {\mathbb{C}_p}}\) trace the same curve \({k}\) with the polar moment of inertia \({{T_X}}\), the different point \({Z}\) on this line segment \({XY}\) traces another curve \({{k_Z}}\) with the polar moment of inertia \({{T_Z}}\) during the one-parameter planar motion in the fixed plane \({{\mathbb{K}'_p} \subset {\mathbb{C}_p}}\). Thus, we obtain that the difference between the polar moments of inertia of these curves \({( {{T_Z} - {T_X}} )}\) depends on the only the \({p}\)-distances of this points and \({p}\)-rotation angle of the motion, \({{T_X} - {T_Z} = {\delta _p}ab.}\)  相似文献   

8.
Let \({\mathbb{X} \subset \mathbb {R}^n}\) be a bounded Lipschitz domain and consider the energy functional
$${{\mathbb F}_{\sigma_2}}[u; \mathbb{X}] := \int_\mathbb{X} {\mathbf F}(\nabla u) \, dx,$$
over the space of admissible maps
$${{\mathcal {A}_\varphi}(\mathbb{X}) :=\{u \in W^{1,4}(\mathbb{X}, {\mathbb{R}^n}) : {\rm det}\, \nabla u > 0\, {\rm for}\, {\mathcal {L}^n}{\rm -a.e. in}\, \mathbb{X}, u|_{\partial \mathbb{X}} =\varphi \}},$$
where the integrand \({{\mathbf F}\colon \mathbb M_{n\times n}\to \mathbb{R}}\) is quasiconvex and sufficiently regular. Here our attention is paid to the prototypical case when \({{\mathbf F}(\xi):=\frac{1}{2}\sigma_2(\xi)+\Phi(\det\xi)}\). The aim of this paper is to discuss the question of multiplicity versus uniqueness for extremals and strong local minimizers of \({\mathbb F_{\sigma_2}}\) and the relation it bares to the domain topology. In contrast, for constructing explicitly and directly solutions to the system of Euler–Lagrange equations associated to \({{\mathbb F}_{\sigma_2}}\), we use a topological class of maps referred to as generalised twists and relate the problem to extremising an associated energy on the compact Lie group \({\mathbf {SO}(n)}\). The main result is a surprising discrepancy between even and odd dimensions. In even dimensions the latter system of equations admits infinitely many smooth solutions amongst such maps whereas in odd dimensions this number reduces to one.
  相似文献   

9.
A string is a pair \({(L, \mathfrak{m})}\) where \({L \in[0, \infty]}\) and \({\mathfrak{m}}\) is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \({\mathfrak{m}}\) as its mass density. To each string a differential operator acting in the space \({L^2(\mathfrak{m})}\) is associated. Namely, the Kre?n–Feller differential operator \({-D_{\mathfrak{m}}D_x}\) ; its eigenvalue equation can be written, e.g., as
$$f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.$$
A positive Borel measure τ on \({\mathbb R}\) is called a (canonical) spectral measure of the string \({\textsc S[L, \mathfrak{m}]}\) , if there exists an appropriately normalized Fourier transform of \({L^2(\mathfrak{m})}\) onto L 2(τ). In order that a given positive Borel measure τ is a spectral measure of some string, it is necessary that: (1) \({\int_{\mathbb R} \frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) . (2) Either \({{\rm supp} \tau \subseteq [0, \infty)}\) , or τ is discrete and has exactly one point mass in (?∞, 0). It is a deep result, going back to Kre?n in the 1950’s, that each measure with \({\int_{\mathbb R}\frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) and \({{\rm supp} \tau \subseteq [0, \infty)}\) is a spectral measure of some string, and that this string is uniquely determined by τ. The question remained open, which conditions characterize whether a measure τ with \({{\rm supp} \tau \not\subseteq [0, \infty)}\) is a spectral measure of some string. In the present paper, we answer this question. Interestingly, the solution is much more involved than the first guess might suggest.
  相似文献   

10.
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian–Hamiltonian systems
$$\frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))-a(t)|u(t)|^{p(t)-2}u(t)+\nabla W(t,u(t))=0,$$
where \({t \in \mathbb{R}}\), \({u \in \mathbb{R}^n}\), \({p \in C(\mathbb{R},\mathbb{R})}\) with p(t) > 1, \({a \in C(\mathbb{R},\mathbb{R})}\), \({W\in C^1(\mathbb{R}\times\mathbb{R}^n,\mathbb{R})}\) and \({\nabla W(t,u)}\) is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants \({0<\tau_1<\tau_2<\infty}\) such that \({\tau_1\leq a(t)\leq \tau_2 }\) for all \({t \in \mathbb{R}}\) and W(t, u) is of super-p(t) growth or sub-p(t) growth as \({|u|\rightarrow \infty}\), we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
  相似文献   

11.
We describe a class of discontinuous additive functions \({a:X\to X}\) on a real topological vector space X such that \({a^n={\rm id}_X}\) and \({a({\mathcal{H}}){\setminus} {\mathcal{H}}\neq\emptyset}\) for every infinite set \({{\mathcal{H}}\subset X}\) of vectors linearly independent over \({\mathbb{Q}}\). We prove the density of the family of all such functions in the linear topological space \({{\mathcal{A}}_X}\) of all additive functions \({a:X\to X}\) with the topology induced on \({{\mathcal{A}}_X}\) by the Tychonoff topology of the space XX. Moreover, we consider additive functions \({a\in{\mathcal{A}}_X}\) satisfying \({a^n={\rm id}_X}\) and \({a({\mathcal{H}})= {\mathcal{H}}}\) for some Hamel basis \({{\mathcal{H}}}\) of X. We show that the class of all such functions is also dense in \({{\mathcal{A}}_X}\). The method is based on decomposition theorems for linear endomorphisms.  相似文献   

12.
In the top to random shuffle, the first \({a}\) cards are removed from a deck of \({n}\) cards \({12 \cdots n}\) and then inserted back into the deck. This action can be studied by treating the top to random shuffle as an element \({B_a}\), which we define formally in Section 2, of the algebra \({{\mathbb{Q}[S_n]}}\). For \({a = 1}\), Garsia in “On the powers of top to random shuffling” (2002) derived an expansion formula for \({{B^k_1}}\) for \({{k \leq n}}\), though his proof for the formula was non-bijective. We prove, bijectively, an expansion formula for the arbitrary finite product \({B_{a1} B_{a2} \cdots B_{ak}}\) where \({a_{1}, \cdots , a_{k}}\) are positive integers, from which an improved version of Garsia’s aforementioned formula follows. We show some applications of this formula for \({B_{a1} B_{a2} \cdots B_{ak}}\), which include enumeration and calculating probabilities. Then for an arbitrary group \({G}\) we define the group of \({G}\)-permutations \({{S^G_n} := {G \wr S_n}}\) and further generalize the aforementioned expansion formula to the algebra \({{\mathbb{Q} [ S^G_n ]}}\) for the case of finite \({G}\), and we show how other similar expansion formulae in \({{\mathbb{Q} [S_n]}}\) can be generalized to \({{\mathbb{Q} [S^G_n]}}\).  相似文献   

13.
We study nonoscillation/oscillation of the dynamic equation
$${(rx^\Delta)}^{\Delta}(t) + p(t)x(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$
where \({t_0 \in \mathbb{T}}\), \({{\rm sup} \mathbb{T} = \infty}\), \({r \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R}^+)}\), \({p \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, {\mathbb{R}^+_0})}\). By using the Riccati substitution technique, we construct a sequence of functions which yields a necessary and sufficient condition for the nonoscillation of the equation. In addition, our results are new in the theory of dynamic equations and not given in the discrete case either. We also illustrate applicability and sharpness of the main result with a general Euler equation on arbitrary time scales. We conclude the paper by extending our results to the equation
$${(rx^\Delta)}^{\Delta}(t) + p(t)x^\sigma(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$
which is extensively discussed on time scales.
  相似文献   

14.
Let \({n\in\mathbb{N}}\). For \({k\in\{1,\dots,n\}}\) let \({\Omega_k\subset \mathbb{C}}\) be a simply connected domain with a rectifiable boundary. Let \({\Omega^n=\prod_{k=1}^n\Omega_k\subset \mathbb{C}^n}\) be a generalized polydisk with distinguished boundary \({\partial\Omega^n=\prod_{k=1}^n\partial\Omega_k}\). Let E r n ) be the holomorphic Smirnov class on Ω n with index r. We show that the generalized isoperimetric inequality
$ \int\limits_{\Omega^n} |f_1|^p|f_2|^qdV\le \frac{1}{(4\pi)^n}\int\limits_{\partial \Omega^n}|f_1|^pdS \int\limits_{\partial \Omega^n} |f_2|^qdS, $
holds for arbitrary \({f_1\in E^p(\Omega^n)}\) and \({f_2\in E^q(\Omega^n)}\), where 0 < p, q < ∞. We also determine necessary and sufficient conditions for equality.
  相似文献   

15.
Call a set \({A \subseteq \mathbb {R}}\)paradoxical if there are disjoint \({A_0, A_1 \subseteq A}\) such that both \({A_0}\) and \({A_1}\) are equidecomposable with \({A}\) via countabbly many translations. \({X \subseteq \mathbb {R}}\) is hereditarily nonparadoxical if no uncountable subset of \({X}\) is paradoxical. Penconek raised the question if every hereditarily nonparadoxical set \({X \subseteq \mathbb {R}}\) is the union of countably many sets, each omitting nontrivial solutions of \({x - y = z - t}\). Nowik showed that the answer is ‘yes’, as long as \({|X| \leq \aleph_\omega}\). Here we show that consistently there exists a counterexample of cardinality \({\aleph_{\omega+1}}\) and it is also consistent that the continuum is arbitrarily large and Penconek’s statement holds for any \({X}\).  相似文献   

16.
We use the variational concept of \({\Gamma}\)-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation \({u_t=\epsilon^2 {\rm div}(k\nabla u)+f(u,x)}\), for \({(t,x)\in \mathbb{R}^+\times\Omega}\), where \({\Omega\subset\mathbb{R}^n}\), \({n\geq 1}\), supplied with no-flux boundary condition. The novelty here lies in the fact that the roots of the bistable function f are not isolated, meaning that the graphs of its roots are allowed to have contact or intersect each other along a Lipschitz-continuous (n ? 1)-dimensional hypersurface \({\gamma \subset \Omega}\); across this hypersurface, the stable equilibria may have corners. The case of intersecting roots stems from the phenomenon known as exchange of stability which is characterized by \({f(\cdot,x)}\) having only two roots.  相似文献   

17.
In this paper, we study the uniform Hölder continuity of the generalized Riemann function \({R_{\alpha,\beta} \,\,{\rm (with}\,\, \alpha > 1 \,\,{\rm and}\,\, \beta > 0}\)) defined by
$$R_{\alpha,\beta}(x) = \sum_{n=1}^{+\infty} \frac{\sin(\pi n^\beta x)}{n^\alpha},\quad x \in \mathbb{R},$$
using its continuous wavelet transform. In particular, we show that the exponent we find is optimal. We also analyse the behaviour of \({R_{\alpha,\beta} \,\,{\rm as}\,\, \beta}\) tends to infinity.
  相似文献   

18.
In this paper, we deal with a class of semilinear parabolic problems related to a Hardy inequality with singular weight at the boundary.
More precisely, we consider the problem
$$\left\{\begin{array}{l@{\quad}l}u_t-\Delta u=\lambda \frac{u^p}{d^2}&\text{ in }\,\Omega_{T}\equiv\Omega \times (0,T), \\u>0 &\text{ in }\,{\Omega_T}, \\u(x,0)=u_0(x)>0 &\text{ in }\,\Omega, \\u=0 &\text{ on }\partial \Omega \times (0,T),\end{array}\right.$$
(P)
where Ω is a bounded regular domain of \({\mathbbm{R}^N}\), \({d(x)=\text{dist}(x,\partial\Omega)}\), \({p > 0}\), and \({\lambda > 0}\) is a positive constant.
We prove that
  1. 1.
    If \({0 < p < 1}\), then (P) has no positive very weak solution.
     
  2. 2.
    If \({p=1}\), then (P) has a positive very weak solution under additional hypotheses on \({\lambda}\) and \({u_0}\).
     
  3. 3.
    If \({p > 1}\), then, for all \({\lambda > 0}\), the problem (P) has a positive very weak solution under suitable hypothesis on \({u_0}\).
     
Moreover, we consider also the concave–convex-related case.
  相似文献   

19.
Let \(\Phi _{n}(x)=e^x-\sum _{j=0}^{n-2}\frac{x^j}{j!}\) and \(\alpha _{n} =n\omega _{n-1}^{\frac{1}{n-1}}\) be the sharp constant in Moser’s inequality (where \(\omega _{n-1}\) is the area of the surface of the unit \(n\)-ball in \(\mathbb {R}^n\)), and \(dV\) be the volume element on the \(n\)-dimensional hyperbolic space \((\mathbb {H}^n, g)\) (\(n\ge {2}\)). In this paper, we establish the following sharp Moser–Trudinger type inequalities with the exact growth condition on \(\mathbb {H}^n\):
For any \(u\in {W^{1,n}(\mathbb {H}^n)}\) satisfying \(\Vert \nabla _{g}u\Vert _{n}\le {1}\), there exists a constant \(C(n)>0\) such that
$$\begin{aligned} \int _{\mathbb {H}^n}\frac{\Phi _{n}(\alpha _{n}|u|^{\frac{n}{n-1}})}{(1+|u|)^{\frac{n}{n-1}}}dV \le {C(n)\Vert u\Vert _{L^n}^{n}}. \end{aligned}$$
The power \(\frac{n}{n-1}\) and the constant \(\alpha _{n}\) are optimal in the following senses:
  1. (i)
    If the power \(\frac{n}{n-1}\) in the denominator is replaced by any \(p<\frac{n}{n-1}\), then there exists a sequence of functions \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha _{n}(|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV \rightarrow {\infty }. \end{aligned}$$
     
  2. (ii)
    If \(\alpha >\alpha _{n}\), then there exists a sequence of function \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha (|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV\rightarrow {\infty }, \end{aligned}$$
    for any \(p\ge {0}\).
     
This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud 13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on hyperbolic spaces.
  相似文献   

20.
For every finite measure \({\mu}\) on \({{\mathbb{R}}^n}\) we define a decomposability bundle \({V(\mu,\,\cdot)}\) related to the decompositions of \({\mu}\) in terms of rectifiable one-dimensional measures. We then show that every Lipschitz function on \({{\mathbb{R}}^n}\) is differentiable at \({\mu}\)-a.e. \({x}\) with respect to the subspace \({V(\mu,\,x)}\), and prove that this differentiability result is optimal, in the sense that, following (Alberti et al., Structure of null sets, differentiability of Lipschitz functions, and other problems, 2016), we can construct Lipschitz functions which are not differentiable at \({\mu}\)-a.e. \({x}\) in any direction which is not in \({V(\mu,\,x)}\). As a consequence we obtain a differentiability result for Lipschitz functions with respect to (measures associated to) \({k}\)-dimensional normal currents, which we use to extend certain basic formulas involving normal currents and maps of class \({C^1}\) to Lipschitz maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号