首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of [(eta5-C5H5)Ru(PR'3)2(Cl)] with NaBAr(F) [BAr(F)-=B{3,5-[C6H3(CF3)2]}4-; PR'3=PEt3 or 1/2Et2PCH2CH2PEt2) (depe)] and PR2H (R=Ph, a; tBu, b; Cy, c) in C6H5F, or of related cationic Ru(N2) complexes with PR2H in C6H5F, gave the secondary phosphine complexes [(eta5-C5H5)Ru(PR'3)2(PR2H)]+ BAr(F)- (PR'3=PEt3, 3 a-c; 1/2depe, 4 a,b) in 65-91 % yields. Additions of tBuOK (3 a, 4 a; [D6]acetone) or NaN(SiMe3)2 (3 b,c, 4 b; [D8]THF) gave the title complexes [(eta5-C5H5)Ru(PEt3)2(PR2)] (5 a-c) and [(eta5-C5H5)Ru(depe)(PR2)] (6 a,b) in high spectroscopic yields. These complexes were rapidly oxidized in air; with 5 a, [(eta5-C5H5)Ru(PEt3)2{P(=O)Ph2}] was isolated (>99 %). The reaction of 5 a and elemental selenium yielded [(eta5-C5H5)Ru(PEt3)2{P(=Se)Ph2}] (70 %); selenides from 5 c and 6 a were characterized in situ. Competitive deprotonation reactions showed that 5 a is more basic than the rhenium analog [(eta5-C5H5)Re(NO)(PPh3)(PPh2)], and that 6 b is more basic than PtBu3 and P(iPrNCH2CH2)3N. The latter is one of the most basic trivalent phosphorus compounds [pK(a)(acetonitrile) 33.6]. Complexes 5 a-c and 6 b are effective ligands for Pd(OAc)2-catalyzed Suzuki coupling reactions: 6 b gave a catalyst nearly as active as the benchmark organophosphine PtBu3; 5 a, with a less bulky and electron-rich PR2 moiety, gave a less active catalyst. The reaction of 5 a and [(eta3-C3H5)Pd(NCPh)2]+ BF4- gave the bridging phosphido complex [(eta5-C5H5)Ru(PEt3)2(PPh2)Pd(NCPh)(eta3-C3H5)]+ BAr(F)- in approximately 90 % purity. The crystal structure of 4 a is described, as well as substitution reactions of 3 b and 4 b.  相似文献   

2.
Reactions of the anionic gallium(i) heterocycle, [:Ga{[N(Ar)C(H)](2)}](-) (Ar = C(6)H(3)Pr(i)(2)-2,6), with a variety of mono- and bidentate phosphine, tmeda and 1,5-cyclooctadiene (COD) complexes of group 10 metal dichlorides are reported. In most cases, salt elimination occurs, affording either mono(gallyl) complexes, trans-[MCl{Ga{[N(Ar)C(H)](2)}}(PEt(3))(2)] (M = Ni or Pd) and cis-[PtCl{Ga{[N(Ar)C(H)](2)}}(L)] (L = R(2)PCH(2)CH(2)PR(2), R = Ph (dppe) or cyclohexyl (dcpe)), or bis(gallyl) complexes, trans-[M{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)] (M = Ni, Pd or Pt), cis-[Pt{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)], cis-[M{Ga{[N(Ar)C(H)](2)}}(2)(L)] (M = Ni, Pd or Pt; L = dppe, Ph(2)CH(2)PPh(2) (dppm), tmeda or COD). The crystallographic and spectroscopic data for the complexes show that the trans-influence of the gallium(i) heterocycle lies in the series, B(OR)(2) > H(-) > PR(3) approximately [:Ga{[N(Ar)C(H)](2)}](-) > Cl(-). Comparisons between the reactivity of one complex, [Pt{Ga{[N(Ar)C(H)](2)}}(2)(dppe)], with that of closely related platinum bis(boryl) complexes indicate that the gallyl complex is not effective for the catalytic or stoichiometric gallylation of alkenes or alkynes. The phosphaalkyne, Bu(t)C[triple bond, length as m-dash]P, does, however, insert into one gallyl ligand of the complex, leading to the novel, crystallographically characterised P,N-gallyl complex, [Pt{Ga{[N(Ar)C(H)](2)}}{Ga{PC(Bu(t))C(H)[N(Ar)]C(H)N(Ar)}}(dppe)]. An investigation into the mechanism of this insertion reaction has been undertaken.  相似文献   

3.
The reaction of Ni(COD)(2)(COD = 1,5-cyclooctadiene) with triethylphosphine and pentafluoropyridine in hexane has been shown previously to yield trans-[NiF(2-C(5)NF(4))(PEt(3))(2)](1a) with a preference for reaction at the 2-position of the heteroaromatic. The corresponding reaction with 2,3,5,6-tetrafluoropyridine was shown to yield trans-[NiF(2-C(5)NF(3)H)(PEt(3))(2)](1b). In this paper, we show that reaction of Ni(COD)(2) with triethylphosphine and pentafluoropyridine in THF yields a mixture of 1a and 1b. Competition reactions of Ni(COD)(2) with triethylphosphine in the presence of mixtures of heteroaromatics in hexane reveal a kinetic preference of k(pentafluoropyridine):k(2,3,5,6-tetrafluoropyridine)= 5.4:1. Treatment of 1a and 1b with Me(3)SiN(3) affords trans-[Ni(N(3))(2-C(5)NF(4))(PEt(3))(2)](2a) and trans-[Ni(N(3))(2-C(5)NHF(3))(PEt(3))(2)](2b), respectively. The complex trans-[Ni(NCO)(2-C(5)NHF(3))(PEt(3))(2)](3b) is obtained on reaction of with Me(3)SiNCO and by photolysis of under CO, while trans-[Ni(eta(1)-C [triple bond CPh)(2-C(5)NF(4))(PEt(3))(2)](4a) is obtained by reaction of phenylacetylene with 1a. Addition of KCN, KI and NaOAc to complex 1a affords trans-[Ni(X)(2-C(5)NF(4))(PEt(3))(2)](5a X = CN, 6a X = I, 7a X = OAc), respectively. The PEt(3) groups of complex are readily replaced by addition of 1,2-bis(dicyclohexylphosphino)ethane (dcpe) to produce [NiF(2-C(5)F(4)N)(dcpe)](8a). Addition of dcpe to trans-[Ni(OTf)(2-C(5)F(4)N)(PEt(3))(2)](10a), however, yields the salt [Ni(2-C(5)F(4)N)(dcpe)(PEt(3))](OTf)(9a) by substitution of only one PEt(3) and displacement of the triflate ligand. The structures of 2b, 4a, 7a and 8a were determined by X-ray crystallography. The influence of different ancillary ligands on the bond lengths and angles of square-planar nickel structures with polyfluoropyridyl ligands is analysed.  相似文献   

4.
Treatment of HgCl(2) with 2-LiC(6)H(4)PPh(2) gives [Hg(2-C(6)H(4)PPh(2))(2)] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds [Hg[2-C(6)H(4)P(X)Ph(2)](2)] [ X = O (3), S (4), and BH(3) (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either cis or trans coordination sites in a planar complex. Representative complexes include [HgX(2) x 1] [X = Cl (6a), Br (6b)], cis-[PtX(2) x 1] [X = Cl (cis-7), Me (9), Ph (10)], and trans-[MX(2) x 1] [X = Cl, M = Pt (trans-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) A, respectively] that are suggestive of a donor-acceptor interaction, M --> Hg. Prolonged heating of 1 with [PtCl(2)(cod)] gives the binuclear cyclometalated complex [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)HgCl] (14) from which the salt [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)Hg]PF(6) (15) is derived by treatment with AgPF(6). In 14 and 15, the mu-C(6)H(4)PPh(2) groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) A, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in [Cl((n)Bu(3)P)Pd(mu-C(6)H(4)PPh(2))(2)HgCl] (16), which is formed by heating 1 with [PdCl(2)(P(n)()Bu(3))(2)]. Reaction of 1 with [Pd(dba)(2)] [dba = dibenzylideneacetone] at room temperature gives [Pd(1)(2)] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand [Hg(2-C(6)H(4)PPh(2))[2-C(6)H(4)P(O)Ph(2)]]. On heating, 19 eliminates Pd and Hg, and the C-C coupled product 2-Ph(2)PC(6)H(4)C(6)H(4)PPh(2)-2 (18) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as [Pt(eta(1)-C-2-C(6)H(4)PPh(2))(eta(2)-2-C(6)H(4)PPh(2))(eta(1)-P-1)]. Crystal data are as follows. Compound 3: monoclinic, P2(1)/n, with a = 11.331(3) A, b = 9.381(2) A, c = 14.516 A, beta = 98.30(2) degrees, and Z = 2. Compound 6b x 2CH(2)Cl(2): triclinic, P macro 1, with a = 12.720(3) A, b = 13.154(3) A, c = 12.724(2) A, alpha = 92.01(2) degrees, beta = 109.19(2) degrees, gamma = 90.82(2) degrees, and Z = 2. Compound trans-7 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.805(3) A, b = 8.532(4) A, c = 23.076(2) A, and Z = 4. Compound 11 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.455(3) A, b = 8.496(5) A, c = 22.858(3) A, and Z = 4. Compound 14: monoclinic, P2(1)/c, with a = 13.150(3) A, b = 12.912(6) A, c = 26.724(2) A, beta = 94.09(1) degrees, and Z = 4. Compound 20 x C(6)H(5)CH(3).0.5CH(2)Cl(2): triclinic, P macro 1, with a = 13.199(1) A, b = 15.273(2) A, c = 17.850(1) A, alpha = 93.830(7), beta = 93.664(6), gamma = 104.378(7) degrees, and Z = 2.  相似文献   

5.
The bromocyclopentadienyl complex [(eta5-C5H4Br)Re(CO)3] is converted to racemic [(eta5-C5H4Br)Re(NO)(PPh3)(CH2PPh2)] (1 b) similarly to a published sequence for cyclopentadienyl analogues. Treatment of enantiopure (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH3)] with nBuLi and I2 gives (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH3)] ((S)-6 c; 84 %), which is converted (Ph3C+ PF6 -, PPh2H, tBuOK) to (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH2PPh2)] ((S)-1 c). Reactions of 1 b and (S)-1 c with Pd[P(tBu)3]2 yield [{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-X)}2] (10; X = b, Br, rac/meso, 88 %; c, I, S,S, 22 %). Addition of PPh3 to 10 b gives [(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(PPh3)(Br)] (11 b; 92 %). Reaction of (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] ((S)-2) and Pd(OAc)(2) (1.5 equiv; toluene, RT) affords the novel Pd3(OAc)4-based palladacycle (S,S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-OAc)2Pd(mu-OAc)2Pd(mu-PPh2CH2)(Ph3P)(ON)Re(eta5-C5H4)] ((S,S)-13; 71-90 %). Addition of LiCl and LiBr yields (S,S)-10 a,b (73 %), and Na(acac-F6) gives (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(acac-F6)] ((S)-16, 72 %). Reaction of (S,S)-10 b and pyridine affords (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(NC5H5)(Br)] ((S)-17 b, 72 %); other Lewis bases yield similar adducts. Reaction of (S)-2 and Pd(OAc)2 (0.5 equiv; benzene, 80 degrees C) gives the spiropalladacycle trans-(S,S)-[{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)}2Pd] (39 %). The crystal structures of (S)-6 c, 11 b, (S,S)- and (R,R)-132 C7H8, (S,S)-10 b, and (S)-17 b aid the preceding assignments. Both 10 b (racemic or S,S) and (S)-16 are excellent catalyst precursors for Suzuki and Heck couplings.  相似文献   

6.
Controlled base hydrolysis of one or both of the protected 1,2-dithiolene chelates of 1,3,5,7-tetrathia- s-indacene-2,6-dione (OCS 2C 6H 2S 2CO) enables the stepwise synthesis of di- and trimetallic complexes with 1,2,4,5-benzenetetrathiolate as the connector. Treatment of OCS 2C 6H 2S 2CO with MeO (-), followed by [NiBr 2(dcpe)] [dcpe = 1,2-bis(dicyclohexylphosphino)ethane], yields [(dcpe)Ni(S 2C 6H 2S 2CO)] ( 4). The reaction of 4 with EtO (-), followed by [MX 2(dcpe)] (X = halide), yields [(dcpe)Ni(S 2C 6H 2S 2)M(dcpe)] [M = Ni ( 5a), Pd ( 5b)]. Deprotection of the 1,3-dithiol-2-one group of 4, followed by introduction of (1)/ 2 equiv of MX 2 and then I 2, yields the neutral trimetallic compounds [(dcpe)Ni(S 2C 6H 2S 2)] 2M [M = Ni ( 6a), Pt ( 6b)]. Tetrahedralization at nickel is observed in 5a, which density functional theory calculations attribute to second-order Jahn-Teller effects, while 6a and 6b display an end-to-end folding of approximately 46 degrees . A color darkening is observed in moving from 4 to compounds 6 due to the increasing size of the conjugated metal-organic pi system. Intense, broad absorptions in the near-IR are observed for 6a and 6b.  相似文献   

7.
The generation of polynuclear complexes with one, two, or four acetylenedithiolate bridging units via the isolation of eta2-alkyne complexes of acetylenedithiolate K[Tp'M(CO)(L)(C2S2)] (Tp'=hydrotris(3,5-dimethylpyrazolyl)borate, M=W, L=CO (K-3a), M=Mo, L=CNC6H3Me2 (K-3b)) is reported. The strong electronic cooperation of Ru and W in the heterobimetallic complexes [(eta5-C5H5)(PPh3)Ru(3a)] (4a) and [(eta5-C5H5)(Me2C6H3NC)Ru(3a)] (4b) has been elucidated by correlation of the NMR, IR, UV-vis, and EPR-spectroscopic properties of the redox couples 4a/4a+ and 4b/4b+ with results from density functional calculations. Treatment of M(II) (M=Ni, Pd, Pt) with K-3a and K-3b afforded the homoleptic bis complexes [M(3a)2] (M=Ni (5a), Pd (5b), Pt (5c)), and [M(3b)2] (M=Pd (6a) and Pt (6b)), in which the metalla-acetylendithiolates exclusively serve as S,S'-chelate ligands. The vibrational and electronic spectra as well as the cyclic voltammetry behavior of all the complexes are compared. The structural analogy of 5a/5b/5c and 6a/6b with dithiolene complexes is only partly reflected in the electronic structures. The very intense visible absorptions involve essential d orbital contributions of the central metal, while the redox activity is primarily attributed to the alkyne complex moiety. Accordingly, stoichiometric reduction of 5a/5b/5c yields paramagnetic complex anions with electron-rich alkyne complex moieties being indistinguishable in the IR time scale. K-3a forms with Cu(I) the octanuclear cluster [Cu(3a)]4 (7) exhibiting a Cu4(S2C2)4W4 core. The nonchelating bridging mode of the metalla-acetylenedithiolate 3a- in 7 is recognized by a high-field shift of the alkyne carbon atoms in the 13C NMR spectrum. X-ray diffraction studies of K[Tp'(CO)(Me3CNC)Mo(eta2-C2S2)] (K-3c), 4b, 6a, 6b, and 7 are included. Comparison of the molecular structures of K-3c and 7 on the one hand with 4b and 6a/6b on the other reveals that the small bend-back angles in the latter are a direct consequence of the chelate ring formation.  相似文献   

8.
A series of mononuclear cyclometalated benzo[h]quinolinate platinum and palladium(II) complexes with phosphine ligands, namely, [M(bzq)ClL] (L=PPh2H, Pt 1, Pd 2; PPh2CCPh, Pt 3, Pd 4), [Pt(bzq)(PPh2H)(PPh2CCPh)]ClO4 5, [Pt(bzq)(PPh2C(Ph)=C(H)PPh2)]ClO4 6, and [Pt(bzq)(CCPh)(PPh2CCPh)] (7a, 7b), were synthesized. The X-ray crystal structures of 1, 6.CH3COCH3.1/2CH3(CH2)4CH3, and 7b.CH3COCH3 have been determined. In 1, the metalated carbon atom and the P atom are mutually cis, whereas in 7b they are trans located. For complex 6, C and N are crystallographically indistinguishable. Reaction of [Pt(bzq)(mu-Cl)]2 with PPh2H and excess of NEt3 leads to the phosphide-bridge platinum dimer [Pt(bzq)(mu-PPh2)]2 8 (X-ray). Moderate pi-pi intermolecular interactions and no evident Pt-Pt interactions are found in 1, 7b, and in 8. All of the complexes exhibit absorption bands at high energy due to the intraligand transitions (1IL pi --> pi) and absorptions at lower energy which are attributed to MLCT (5d) pi --> pi (CLambdaN) transition. Platinum complexes show strong luminescence in both solid state and frozen solutions. The influence of the coligands on the photophysics of the platinum complexes has been examined by absorption and emission spectroscopy.  相似文献   

9.
New mixed-valence iron-nickel dithiolates are described that exhibit structures similar to those of mixed-valence diiron dithiolates. The interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)(3)]BF(4) ([1]BF(4), where dppe = Ph(2)PCH(2)CH(2)PPh(2) and pdt(2-) = -SCH(2)CH(2)CH(2)S-) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) incorporating L = PHCy(2) ([1a]BF(4)), PPh(NEt(2))(2) ([1b]BF(4)), P(NMe(2))(3) ([1c]BF(4)), P(i-Pr)(3) ([1d]BF(4)), and PCy(3) ([1e]BF(4)). The related precursor [(dcpe)Ni(pdt)Fe(CO)(3)]BF(4) ([2]BF(4), where dcpe = Cy(2)PCH(2)CH(2)PCy(2)) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = PPh(2)(2-pyridyl) ([2a]BF(4)), PPh(3) ([2b]BF(4)), and PCy(3) ([2c]BF(4)). For bulky and strongly basic monophosphorus ligands, the salts feature distorted coordination geometries at iron: crystallographic analyses of [1e]BF(4) and [2c]BF(4) showed that they adopt "rotated" Fe(I) centers, in which PCy(3) occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, members of the new class of complexes are described as Ni(II)Fe(I) (S = (1)/(2)) systems according to electron paramagnetic resonance spectroscopy, although with attenuated (31)P hyperfine interactions. Density functional theory calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e](+) is mostly localized in a Fe(I)-centered d(z(2)) orbital, orthogonal to the Fe-P bond. The PCy(3) complexes, rare examples of species featuring "rotated" Fe centers, both structurally and spectroscopically incorporate features from homobimetallic mixed-valence diiron dithiolates. Also, when the NiS(2)Fe core of the [NiFe]-hydrogenase active site is reproduced, the "hybrid models" incorporate key features of the two major classes of hydrogenase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)(2)L](+/2+). The resulting unsaturated 32e(-) dications represent the closest approach to modeling the highly electrophilic Ni-SI(a) state. In the case of L = PPh(2) (2-pyridyl), chelation of this ligand accompanies the second oxidation.  相似文献   

10.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

11.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

12.
Acetone solutions of [Au(OClO3)(PCy3)] react with complexes [M{S2C=(t-Bu-fy)}2]2- [t-Bu-fy=2,7-di-tert-butylfluoren-9-ylidene; M=Pd (2a), Pt (2b)] or [M{S2C=(t-Bu-fy)}(dbbpy)] [dbbpy=4,4'-di-tert-butyl-2,2'-bipyridyl; M=Pd (3a), Pt (3b)] to give the heteronuclear complexes [M{S2C=(t-Bu-fy)}2{Au(PCy3)}2] [2:1 molar ratio; M=Pd (4a), Pt (4b)], [M{S2C=(t-Bu-fy)}(dbbpy){Au(PCy3)}]ClO4 [1:1 molar ratio; M=Pd (5a), Pt (5b)], or [M{S2C=(t-Bu-fy)}(dbbpy){Au(PCy3)}2](ClO4)2 [2:1 molar ratio; M=Pd (6a), Pt (6b)]. The crystal structures of 3a, 4a, 4b, 5b, and 6a have been solved by single-crystal X-ray studies and, in the cases of the heteronuclear derivatives, reveal the formation of short Pd...Au or Pt...Au metallophilic contacts in the range of 3.048-3.311 A. Compounds 4a and b and 5a and b undergo a dynamic process in solution that involves the migration of the [Au(PCy3)]+ units between the sulfur atoms of the dithiolato ligands. The coordination of 2a and b and 3a and b to [Au(PCy3)]+ units results in important modifications of their photophysical properties. The dominant effect in the absorption spectra is an increase in the energy of the MLCT (4a and b) or charge transfer to diimine (5a, b, 6a, b) transitions because of a decrease in the energies of the mixed metal/dithiolate HOMOs. The Pd complexes 2a and 4a are luminescent at 77 K, and the features of their emissions are consistent with an essentially metal-centered 3d-d state. The Pt/Au complexes are also luminescent at 77 K, and their emissions can be assigned as originating from a MLCT triplet state (4b) or a mixture of charge transfer to diimine and diimine intraligand pi-pi* triplet states (5b and 6b).  相似文献   

13.
The reactivity of isolobal molybdenum carbonylmetalates containing a 2-boratanaphthalene, [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (5a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (5b), a 1-boratabenzene, [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (8), or a functionalized cyclopentadienyl ligand, the new metalate [Mo(eta5-C5H4Ph)(CO)3]- (7) and [Mo(eta5-C5H4NMe2)(CO)3]- (9), toward palladium (I and II) or platinum (I and II) complexes, such as trans-[PdCl2(NCPh)2], [Pd2(NCMe)6](BF4)2, trans-[PtCl2(PEt3)2], and [N(n-Bu)4]2 [Pt2Cl4(CO)2], has been investigated, and this has allowed an evaluation of the influence of the pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal-bonded heterometallic clusters. The new 58 CVE planar-triangulated centrosymmetric clusters, [Mo2Pd2(eta5-C5H4Ph)2(CO)6(PEt3)2] (11), [Mo2Pd2(eta5-2,4-MeC9H6BNi-Pr2)2(CO)6] (12), [Mo(2)Pd(2)(eta5-3,5-Me2C5H3BNi-Pr2)2(CO)6] (13), [Mo2Pd2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (15), [Mo2Pt2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (16), and [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (20), have been characterized by single-crystal X-ray diffraction. Their structural features were compared with those of the 54 CVE cluster [Re2Pd2(eta5-C4H4BPh)2(CO)6)] (4), previously obtained from the borole-containing metalate [Re(eta5-C4H4BPh)(CO)3]- (2), in which a 2e-3c B-C(ipso)-Pd interaction involving the pi-ring was observed. As an extension of what has been observed in 4, clusters 12 and 13 present a direct interaction of the boratanaphthalene (12) and the boratabenzene (13) ligands with palladium. In clusters 11, 15, 16, and 20, the pi-ring does not interact with the palladium (11 and 15) or platinum centers (16 and 20), which confers to these clusters a geometry very similar to that of [Mo2Pd2(eta5-C5H5)2(CO)6(PEt3)2] (3b). The carbonylmetalates [Mo(pi-ring)(CO)3]- are thus best viewed as formal four electron donors which bridge a dinuclear d9-d9 unit. The orientation of this building block in the clusters influences the shape of their metal cores and the bonding mode of the bridging carbonyl ligands. The crystal structure of new centrosymmetric complex [Mo(eta5-C5H4Ph)(CO)3]2 (10) was determined, and it revealed intramolecular contacts of 2.773(4) A between the carbon atoms of carbonyl groups across the metal-metal bond and intermolecular bifurcated interactions between the carbonyl oxygen atoms (2.938(4) and 3.029(4) A), as well as intermolecular C-H...pi(Ar)(C=C) interactions (2.334(3) and 2.786(4) A) involving the phenyl substituents.  相似文献   

14.
Ruthenacarborane complexes of formula [3-H-3,3-(PPh3)2-8-L-closo-3,1,2-RuC2B9H10)] (L = SMe2 (2a), SEt2 (2b), S(CH2)4 (2c), SEtPh (2d)) and [1-Me-3-H-3,3-(PPh3)2-8-L-closo-3,1,2-RuC2B9H9)] (L = SMe2 (2e), SEt2 (2f)) were prepared by reaction of the respective monoanionic charge-compensated ligands [10-L-nido-7,8-C2B9H10]- and [7-Me-10-L-nido-7,8-C2B9H9]- with [RuCl2(PPh3)3]. Similary, complexes [3-H-3,3,8-(PPh3)3-closo-3,1,2-RuC2B9H10)] (4a) and [3-H-3,3-(PPh3)2-8-PPh2Me-closo-3,1,2-RuC2B9H10)] (4b) were prepared from the corresponding phosphonium ligands. The reaction is done in one pot by reacting the ligand with the Ru(II) complex in a 1.5:1 ratio. All compounds have been fully characterized by multinuclear NMR spectroscopy, and the molecular structures for 2a and 4a have been elucidated by single-crystal X-ray diffraction analysis. The Ru(II) atom in this complex is on the open face of the monoanionic charge-compensated ligand adopting a pseudooctahedral coordination. Formally, three positions are supplied by the C2B3 open face, two PPh3 groups occupy two other positions, and a hydride fulfills the remaining one. The hydride complexes were generated with no special reagent. They result from a dehalogenation in the presence of ethanol.  相似文献   

15.
Linear gold(I) and silver(I) complexes with the ferrocenyl phosphine FcCH2PPh2 [Fc = (eta5-C5H5)Fe(eta5-C5H4)] of the types [AuR(PPh2CH2Fc)], [M(PPh3)(PPh2CH2Fc)]OTf, and [M(PPh2CH2Fc)2]OTf (M = Au, Ag) have been obtained. Three-coordinate gold(I) and silver(I) derivatives of the types [AuCl(PPh2CH2Fc)2] and [M(PPh2CH2Fc)3]X (M = Au, X = ClO4; M = Ag, X = OTf) have been obtained from the corresponding gold and silver precursors in the appropriate molar ratio, although some of them are involved in equilibria in solution. The crystal structures of [AuR(PPh2CH2Fc)] (R = Cl, C6F5), [AuL(PPh2CH2Fc)]OTf (L = PPh3, FcCH2PPh2), [Au(C6F5)3(PPh2CH2Fc)], and [Ag(PPh2CH2Fc)3]OTf have been determined by X-ray diffraction studies.  相似文献   

16.
Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).  相似文献   

17.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2000,39(12):2445-2451
Treatment of the complex [W(CO)5[PPh2(CS2Me)]] (2) with [Pd(PPh3)4] (1) affords binuclear complexes such as anti-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (3), syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (4), and trans-[W(CO)4(PPh3)2] (5). In 3 and 4, respectively, the W and Pd atoms are in anti and syn configurations with respect to the P-CS2 bond of the diphenyl(dithiomethoxycarbonyl)phosphine ligand, PPh2(CS2Me). Complex 3 undergoes extensive rearrangement in CHCl3 at room temperature by transfer of a PPh3 ligand from Pd to W, eliminating [W(CO)5(PPh3)] (7), while the PPh2CS2Me ligand transfers from W to Pd to give [[(Ph3P)Pd[mu-eta 1,eta 2-(CS2Me)PPh2]]2] (6). In complex 6, the [Pd(PPh3)] fragments are held together by two bridging PPh2(CS2Me) ligands. Each PPh2(CS2Me) ligand is pi-bonded to one Pd atom through the C=S linkage and sigma-bonded to the other Pd through the phosphorus atom, resulting in a six-membered ring. Treatment of Pd(PPh3)4 with [W(CO)5[PPh2[CS2(CH2)nCN]]] (n = 1, 8a; n = 2, 8b) in CH2Cl2 affords syn-[(Ph3P)2Pd[mu-eta 1,eta 2-[CS2(CH2)nCN]PPh2]W(CO)5] (n = 1, 9a; n = 2, 9b). Similar configurational products syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2R)PPh2]W(CO)5] (R = C2H5, C3H5, C2H4OH, C3H6CN, 11a-d) are synthesized by the reaction of Pd(PPh3)4 with [W(CO)5[PPh2(CS2R)]] (R = C2H5, C3H5, C2H4OH, C3H6CN, 10a-d). Although complexes 11a-d have the same configuration as 9a,b, the SR group is oriented away from Pd in the former and near Pd in the latter. In these complexes, the diphenyl(dithioalkoxycarbonyl)phosphine ligand is bound to the two metals through the C=S pi-bonding and to phosphorus through the sigma-bonding. All of the complexes are identified by spectroscopic methods, and the structures of complexes 3, 6, 9a, and 11d are determined by single-crystal X-ray diffraction. Complexes 3, 9, and 11d crystallize in the triclinic space group P1 with Z = 2, whereas 6 belongs to the monoclinic space group P2/c with Z = 4. The cell dimensions are as follows: for 3, a = 10.920(3) A, b = 14.707(5) A, c = 16.654(5) A, alpha = 99.98(3) degrees, beta = 93.75(3) degrees, gamma = 99.44(3) degrees; for 6, a = 15.106(3) A, b = 9.848(3) A, c = 20.528(4) A, beta = 104.85(2) degrees; for 9a, a = 11.125(3) A, b = 14.089(4) A, c = 17.947(7) A, alpha = 80.13(3) degrees, beta = 80.39(3) degrees, gamma = 89.76(2) degrees; for 11d, a = 11.692(3) A, b = 13.602(9) A, c = 18.471(10) A, alpha = 81.29(5) degrees, beta = 80.88(3) degrees, gamma = 88.82(1) degrees.  相似文献   

18.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

19.
The nominally square-planar coordination of the d(8) complexes [MClL(1)L(2)(p-XC(6)H(4)NNNHC(6)H(4)X-p)](M = Rh, L(1)= L(2)= CO, X = H, Me, Et or F; M = Ir, L(1)= L(2)= CO, X = Me; M = Pd or Pt, L(1)= Cl, L(2)= PPh(3), X = Me; M = Pd, L(1)L(2)=eta(3)-C(3)H(5), X = Me), with the triazene N-bonded via the imine group, is supplemented by an axial M...H-N interaction involving the terminal amino group.  相似文献   

20.
[Rh(nbd)(PCyp(3))(2)][BAr(F) (4)] (1) [nbd = norbornadiene, Ar(F) = C(6)H(3)(CF(3))(2), PCyp(3) = tris(cyclopentylphosphine)] spontaneously undergoes dehydrogenation of each PCyp(3) ligand in CH(2)Cl(2) solution to form an equilibrium mixture of cis-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 a) and trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 b), which have hybrid phosphine-alkene ligands. In this reaction nbd acts as a sequential acceptor of hydrogen to eventually give norbornane. Complex 2 b is distorted in the solid-state away from square planar. DFT calculations have been used to rationalise this distortion. Addition of H(2) to 2 a/b hydrogenates the phosphine-alkene ligand and forms the bisdihydrogen/dihydride complex [Rh(PCyp(3))(2)(H)(2)(eta(2)-H(2))(2)][BAr(F) (4)] (5) which has been identified spectroscopically. Addition of the hydrogen acceptor tert-butylethene (tbe) to 5 eventually regenerates 2 a/b, passing through an intermediate which has undergone dehydrogenation of only one PCyp(3) ligand, which can be trapped by addition of MeCN to form trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(PCyp(3))(NCMe)][BAr(F) (4)] (6). Dehydrogenation of a PCyp(3) ligand also occurs on addition of Na[BAr(F) (4)] to [RhCl(nbd)(PCyp(3))] in presence of arene (benzene, fluorobenzene) to give [Rh(eta(6)-C(6)H(5)X){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (7: X = F, 8: X = H). The related complex [Rh(nbd){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] 9 is also reported. Rapid ( approximately 5 minutes) acceptorless dehydrogenation occurs on treatment of [RhCl(dppe)(PCyp(3))] with Na[BAr(F) (4)] to give [Rh(dppe){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (10), which reacts with H(2) to afford the dihydride/dihydrogen complex [Rh(dppe)(PCyp(3))(H)(2)(eta(2)-H(2))][BAr(F) (4)] (11). Competition experiments using the new mixed alkyl phosphine ligand PCy(2)(Cyp) show that [RhCl(nbd){PCy(2)(Cyp)}] undergoes dehydrogenation exclusively at the cyclopentyl group to give [Rh(eta(6)-C(6)H(5)X){PCy(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (17: X = F, 18: X = H). The underlying reasons behind this preference have been probed using DFT calculations. All the complexes have been characterised by multinuclear NMR spectroscopy, and for 2 a/b, 4, 6, 7, 8, 9 and 17 also by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号