首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-linked oligosaccharides obtained from total serum of mice with implanted head and neck tumors were analyzed and compared with those from control samples of healthy mice. Methods used include a combination of a derivatization procedure with phenylhydrazine (PHN) and analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Oligosaccharides were enzymatically released from total serum with PNGaseF and purified by high-performance liquid chromatography (HPLC) on a reversed-phase column. Mass spectra contained ion peaks of labeled oligosaccharides and MS/MS experiments provided useful data for the structural elucidation of these compounds. More than 40 N-glycans with compositions characteristic of high-mannose, hybrid, complex, neutral, and sialylated structures were identified in the serum of tumoral mice. Significant differences between samples were observed with respect to the abundances of high mannose and hybrid glycans. These oligosaccharides showed higher relative intensities in the spectra obtained from the cancer sera. Complex sialylated oligosaccharides had similar abundances in both types of sera, with the exception of fucosylated biantennary disialylated oligosaccharide, which was mostly detected with lower abundance in control samples. In the MALDI spectra, several minor species corresponded to uncommon carbohydrates. These structures have been investigated in detail by MS/MS. Among these novel glycoforms, a few sialylated oligosaccharides without a free reducing end were identified. Also, glycans with an extra 60 u were observed and likely feature the presence of a 2-acetamido-2-deoxyoctose residue attached on antennae of 3- or 6-linked mannose.  相似文献   

2.
Morelle W  Michalski JC 《Electrophoresis》2004,25(14):2144-2155
Oligosaccharides were derivatized by reductive amination using benzylamine and analyzed by nanoelectrospray ionization-quadrupole time of flight-tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+H]+ ions for all benzylamine-derivatized oligosaccharides. To obtain structural information from these derivatized oligosaccharides, MS/MS was applied. Protonated molecular ions underwent extensive fragmentation, even under low-energy collision-induced dissociation. MS/MS spectra of [M+H]+ ions are characterized by simple fragmentation patterns which result from cleavage of the glycosidic bonds and thus allow a straightforward interpretation. Fragmentation of the [M+H]+ ions gave predominantly B- and Y-type glycosidic fragments. A systematic study of various oligosaccharides showed that information on sugar sequence and branching could easily be obtained. Predictable and reproducible fragmentation patterns could be obtained in all cases. This derivatization procedure and mass spectrometric methodology were applied successfully to neutral and acidic glycans released from 10 microg of glycoproteins separated by gel electrophoresis. Moreover, the derivatives retain their sensitivity to exoglycosidases. Thus a series of sequential on-target exoglycosidase treatments combined with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was found to be useful for the determination of structural features of the glycans released from proteins separated by gel electrophoresis such as the monosaccharide sequence, branching pattern, and anomeric configurations of the corresponding glycosidic linkages. Our strategy can be used successfully to assign the major glycans released from proteins separated by gel electrophoresis.  相似文献   

3.
This paper reports the use of an experimental matrix-assisted laser desorption/ionisation (MALDI) ion source fitted to a quadrupole time-of-flight (Q-Tof) mass spectrometer for the analysis of carbohydrates, particularly the N-linked glycans from glycoproteins. Earlier work on the Q-Tof instrument, using electrospray ionisation, gave excellent MS/MS spectra, particularly from the [M + Na]+ ions, but suffered from the major disadvantages that the signal was often split between singly and multiply charged ions and that sensitivity fell dramatically as the molecular weight of the carbohydrate rose. The MALDI ion source did not suffer from these problems and the instrument produced excellent MS and MS/MS spectra from small amounts of complex, underivatised glycans as well as those derivatised at the reducing terminus. Positive ion MS spectra of sialylated glycans recorded on the new instrument were much less complex than those recorded with a conventional MALDI-TOF instrument because of the absence of ions resulting from metastable (post-source decay, (PSD)) fragmentations occurring in the flight tube. However, considerable fragmentation by loss of sialic acid still occurred. MS/MS spectra of the [M + Na]+ ions from all compounds were almost identical to those recorded earlier with the electrospray-Q-Tof combination and far superior to MALDI-PSD spectra recorded with reflectron-TOF instruments. Spectra are shown for neutral and sialylated N-linked glycans from chicken ovalbumin, riboflavin binding protein, alpha1-acid glycoprotein, bovine fetuin and ribonuclease B, both as free glycans and as those derivatised at their reducing termini. The technique was applied to the structural determination of N-linked glycans from human secretory IgA and Apo-B 100 from human low-density lipoprotein.  相似文献   

4.
Synthetic gp120331-335 glycopeptide fragments carrying hybrid and high-mannose type N-linked glycans were evaluated for binding to broadly neutralizing antibody 2G12 using surface plasmon resonance technology. None of the hybrid-type constructs demonstrated binding to 2G12. In the high-mannose series, the "Cys dimer" construct, presenting two undecasaccharide glycans, showed significantly higher binding than the Cys-protected monomer. The binding of the dimeric structure was further investigated in competition with recombinant gp120. The data suggest that gp120 and its designed synthetic epitope construct bind to the same site on 2G12.  相似文献   

5.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man(5)GlcNAc(2), Man(6)GlcNAc(2), Man(8)GlcNAc(2), and Man(9)GlcNAc(2) cleaved from the ribonuclease B were assigned from MS(2) spectra of ABEE- and APTS-labeled derivatives.  相似文献   

7.
Since protein phosphorylation is a dominant mechanism of information transfer in cells, there is a great need for methods capable of accurately elucidating sites of phosphorylation. In recent years mass spectrometry has become an increasingly viable alternative to more traditional methods of phosphorylation analysis. The present study used immobilized metal affinity chromatography (IMAC) coupled with a linear ion trap mass spectrometer to analyze phosphorylated proteins in mouse liver. A total of 26 peptide sequences defining 26 sites of phosphorylation were determined. Although this number of identified phosphoproteins is not large, the approach is still of interest because a series of conservative criteria were adopted in data analysis. We note that, although the binding of non-phosphorylated peptides to the IMAC column was apparent, the improvements in high-speed scanning and quality of MS/MS spectra provided by the linear ion trap contributed to the phosphoprotein identification. Further analysis demonstrated that MS/MS/MS analysis was necessary to exclude the false-positive matches resulting from the MS/MS experiments, especially for multiphosphorylated peptides. The use of the linear ion trap considerably enabled exploitation of nanoflow-HPLC/MS/MS, and in addition MS/MS/MS has great potential in phosphoproteome research of relatively complex samples.  相似文献   

8.
The fucosylation of glycans leads to diverse structures and is associated with many biological and disease processes. The exact determination of fucoside positions by tandem mass spectrometry (MS/MS) is complicated because rearrangements in the gas phase lead to erroneous structural assignments. Here, we demonstrate that the combined use of ion‐mobility MS and well‐defined synthetic glycan standards can prevent misinterpretation of MS/MS spectra and incorrect structural assignments of fucosylated glycans. We show that fucosyl residues do not migrate to hydroxyl groups but to acetamido moieties of N‐acetylneuraminic acid as well as N‐acetylglucosamine residues and nucleophilic sites of an anomeric tag, yielding specific isomeric fragment ions. This mechanistic insight enables the characterization of unique IMS arrival‐time distributions of the isomers which can be used to accurately determine fucosyl positions in glycans.  相似文献   

9.
Glycans are oligosaccharides associated with proteins, and are known to confer specific functions and conformations on glycoproteins. As protein tridimensional structures are related to function, the study of glycans and their impact on protein folding can provide important information to the field of proteomics. The subdiscipline of glycomics (or glycoproteomics) is rapidly growing in importance as glycans in proteins have shown to be involved in protein-protein or protein-(drug, virus, antibody) interactions. Glycomics studies most often aim at identifying glycosylation sites, and thus are performed on deglycosylated proteins resulting in loss of site-specific details concerning the glycosylation. In order to obtain such details by mass spectrometry (MS), either whole glycoproteins must be digested and analyzed as mixtures of peptides and glycopeptides, or glycans must be isolated from glycopeptide fractions and analyzed as pools. This article describes parallel experiments involving both approaches, designed to take advantage of the StrOligo algorithm functionalities with the aim of characterizing glycosylation microheterogeneity on a specific site. A hybrid quadrupole-quadrupole-time-of-flight (QqTOF) instrument equipped with a matrix-assisted laser desorption/ionization (MALDI) source was used. Glycosylation of alpha 5 beta 1 subunits of human integrin was studied to test the methodology. The sample was divided in two aliquots, and glycans from the first aliquot were released enzymatically, labelled with 2-aminobenzamide, and identified using tandem mass spectrometry (MS/MS) and the StrOligo program. The other aliquot was digested with trypsin and the resulting peptides separated by reversed-phase high-performance liquid chromatography (HPLC). A specific collected fraction was then analyzed by MS before and after glycan release. These spectra allowed, by comparison, detection of a glycopeptide (several glycoforms) and elucidation of peptide sequence. Compositions of glycans present were proposed, and identification of possible glycan structures was conducted using MS/MS and StrOligo.  相似文献   

10.
The increasing interest in the development of glycoproteins for therapeutic purposes has created a greater demand for methods to characterize the sugar moieties bound to them. Traditionally, released carbohydrates are derivatized using such methods as permethylation or fluorescent tagging prior to analysis by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), or direct infusion mass spectrometry. However, little research has been performed using CE with on-line mass spectrometry (MS) detection. The CE separation of neutral oligosaccharides requires the covalent attachment of a charged species for electrophoretic migration. Among charged labels which have shown promise in assisting CE and HPLC separation is the fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). This report describes the qualitative profiling of charged ANTS-derivatized and underivatized complex glycans by CE with on-line electrospray ion trap mass spectrometry. Several neutral standard glycans including a maltooligosaccharide ladder were derivatized with ANTS and subjected to CE/UV and CE/MS using low pH buffers consisting of citric and 6-aminocaproic acid salts. The ANTS-derivatized species were detected as negative ions, and multiple stage MS analysis provided valuable structural information. Fragment ions were easily identified, showing promise for the identification of unknowns. N-Linked glycans released from bovine fetuin were used to demonstrate the applicability of ANTS derivatization followed by CE/MS for the analysis of negatively charged glycans. Analyses were performed on both underivatized and ANTS-derivatized species, and sialylated glycans were separated and detected in both forms. The ability of the ion trap mass spectrometer to perform multiple stage analysis was exploited, with MS5 information obtained on selected glycans. This technique presents a complementary method to existing methodologies for the profiling of glycan mixtures.  相似文献   

11.
The electrospray mass spectra and collision-induced fragmentation of neutral N-linked glycans obtained from glycoproteins were examined with a Q-TOF mass spectrometer. The glycans were ionized most effectively as adducts of alkali metals, with lithium providing the most abundant signal and caesium the least. Singly charged ions generally gave higher ion currents than doubly charged ions. Addition of formic acid could be used to produce [M + H]+ ions, but these ions were always accompanied by abundant cone-voltage fragments. The energy required for collision-induced fragmentation was found to increase in a linear manner as a function of mass with the [M + Na]+ ions requiring about four times as much energy as the [M + H]+ ions for complete fragmentation of the molecular ions. Fragmentation of the [M + H]+ ions gave predominantly B- and Y-type glycosidic fragments whereas the [M + Na]+ and [M + Li]+ ions produced a number of additional fragments including those derived from cross-ring cleavages. Little fragmentation was observed from the [M + K]+ and [M + Rb]+ ions and the only fragment to be observed from the [M + Cs]+ ion was Cs+. The [M + Na]+ and [M + Li]+ ions from all the N-linked glycans gave abundant fragments resulting from loss of the terminal GlcNAc moiety and prominent, though weaker, ions as the result of 0,2A and 2,4A cross-ring cleavages of this residue. Most other ions were the result of successive additional losses of residues from the non-reducing terminus. This pattern was particularly prominent with glycans containing several non-reducing GlcNAc residues where successive losses of 203 u were observed. Many of the ions in the low-mass range were products of several different fragmentation routes but still provided structural information. Possibly of most diagnostic importance was an ion formed by loss of 221 u (GlcNAc molecule) from an ion that had lost the 3-antenna and the chitobiose core. This latter ion, although coincident in mass with some other 'internal' fragments, often provided additional information on the composition of the antennae. Other ions defining antenna composition were weak cross-ring fragments produced from the core branching mannose residue. Glycans containing Gal-GlcNAc residues showed successive losses of this moiety, particularly from the B-type fragments resulting from loss of the reducing-terminal GlcNAc residue. The [M + Na]+ and [M + Li]+ ions from high-mannose and hybrid glycans gave a series of ions of composition (Man)nNa/Li+ where n = 1 to the total number of glycans in the molecule, allowing these sugars to be distinguished from the more highly processed complex glycans. Other ions in the spectra of the high-mannose glycans were diagnostic of chain branching but insufficient information was available to determine their mode of formation.  相似文献   

12.
Bovine ribonuclease B (RNAse B) and asialofetuin (FETUA) were subjected to in-capillary tryptic digest (Pohlentz et al. Proteomics. 2005, 5, 1758-1763) and the obtained glycopeptides were analyzed, respectively, by nanoelectrospray ionization mass spectrometry and collision-induced dissociation (CID) during the ongoing digest. For RNAse, B glycans of the high-mannose type (Man(4) to Man(9)) attached to either a tetra- or a hexapeptide containing the sole N-glycosylation site of the protein were detected. Glycopeptides derived from all three N-glycosylation sites of FETUA were observed, and the corresponding CID spectra proved the respective glycans to be oligosaccharides of the triantennary complex type. Moreover, an O-glycopeptide carrying Gal-GalNAc at T(280) could be unambiguously identified. An in-solution tryptic/chymotryptic digest of human transferrin (TRFE) was analyzed directly for glycopeptides subsequent to the addition of methanol and formic acid. Disialylated diantennary glycans were observed in glycopeptides of both N-glycosylation sites of TRFE. These results demonstrate the feasibility of direct structure determination of glycopeptides in proteolytic mixtures without any further refurbishment.  相似文献   

13.
We developed a simple high-performance liquid chromatography assay to monitor high-mannose glycans in monoclonal antibodies by monitoring terminal alpha-mannose as a surrogate marker. Analysis of glycan data of therapeutic monoclonal antibodies by 2-aminobenzamide assay showed a linear relationship between high mannose and terminal mannose of Fc glycans. Concanavalin A has a strong affinity to alpha-mannose in glycans of typical therapeutic monoclonal antibodies. To show that terminal mannose binds specifically to Concanavalin A column, exoglycosidase-treated monoclonal antibodies were serially blended with untreated monoclonal antibodies. Linear responses of terminal-mannose binding to the column and comparable data trending with high mannose levels by 2-aminobenzamide assay confirmed that terminal-mannose levels measured by the Concanavalin A column can be used as a surrogate for the prediction of high-mannose levels in monoclonal antibodies. The assay offers a simple, fast, and specific capability for the prediction of high-mannose content in samples compared with traditional glycan profiling by 2-aminobenzamide or mass spectrometry-based methods. When the Concanavalin A column was coupled with protein A column for purification of antibodies from cell culture samples in a fully automated two-dimensional analysis, high-mannose data could be relayed to the manufacturing team in less than 30 min, allowing near-real-time monitoring of high-mannose levels in the cell culture process.  相似文献   

14.
Negative ion tandem mass spectrometry (MS/MS) spectra of three isomeric triantennary N-linked glycans provided clear differentiation between the isomers and confirmed the occurrence of an isomer that was substituted with galactose on a bisecting GlcNAc (1 --> 4-substituted on the core mannose) residue recently reported by Takegawa et al. from N-glycans released from human immunoglobulin G (IgG). We extend this analysis of human serum IgG to reveal an analogue of the fucosylated triantennary glycan reported by Takegawa et al. together with a third compound that lacked both the sialic acid and the fucose residues. In addition, we demonstrate the biosynthesis of bisected hybrid-type glycans with the galactose modification, with and without core fucose, on the stem cell marker glycoprotein, 19A, expressed in a partially ricin-resistant human embryonic kidney cell line. It would appear, therefore, that this modification of N-linked glycans containing a galactosylated bisecting GlcNAc residue may be more common than originally thought. Negative ion MS/MS analysis of glycans is likely to prove an invaluable tool in the analysis and monitoring of therapeutic glycoproteins.  相似文献   

15.
Glycosphingolipid (GSL) is a major component of the plasma membrane in eukaryotic cells that is involved directly in a variety of immunological events via cell‐to‐cell or cell‐to‐protein interactions. In this study, qualitative and quantitative analyses of GSL‐derived glycans on endothelial cells and islets from a miniature pig were performed and their glycosylation patterns were compared. A total of 60 and 47 sialylated and neutral GSL‐derived glycans from the endothelial cells and islets, respectively, were characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and collision‐induced fragmentation using positive‐ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). In accordance with previous immunohistochemistry studies, the α‐Gal‐terminated GSL was not detected but NeuGc‐terminated GSLs were newly detected from miniature pig islets. In addition, the neutral GSL‐derived glycans were relatively quantified by derivatization with carboxymethyl trimethylammonium hydrazide (so called Girard's T reagent) and MALDI‐TOF MS. The structural information of the GSL‐derived glycans from pig endothelial cells and islets suggests that special attention should be paid to all types of glycoconjugates expressed on pig tissues or cells for successful clinical xenotransplantation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The catalytic subunit of recombinant wild-type cyclic adenosine monophosphate-dependent protein kinase A (PKA) has been analyzed by a combination of 1D gel electrophoresis, in-gel digestion by trypsin, chymotrypsin, or endoproteinase AspN, and nano-ultraperformance liquid chromatography–MS/MS. The MS/MS spectra were annotated by MASCOT and the annotations were manually controlled. Using Ga(III)-immobilized metal ion affinity chromatography (IMAC), in addition to the four established autophosphorylation sites of the catalytic subunit of recombinant PKA, pSer10, pSer139, pThr197, and pSer338, six new phosphorylated residues have been characterized–pSer14, pThr48, pSer53, pSer212, pSer259, and pSer325. The established phosphorylation sites all are part of a PKA consensus motif and were found to be almost completely modified. In contrast, the newly detected sites were only partially phosphorylated. For estimation of their degree of phosphorylation, a method based on signal intensity measurements was used. For this purpose, signal intensities of all phospho- and non-phosphopeptides containing a particular site were added for estimation of site-specific phosphorylation degrees. This addition was performed over all peptides observed in the different digestion experiments, including their different charge states. pThr48 and pSer259 are located within PKA consensus motifs and were observed to be phosphorylated at 20% and 24%, respectively. pSer14 and pSer53 are located within inverted PKA consensus motifs and were found to be phosphorylated around 10% and 15%, respectively. The sequence environments of pSer212 and pSer325 have no similarity to the PKA consensus motif at all and were observed to be phosphorylated at about 5% or lower. All newly observed phosphorylation sites are located at the surface of the native protein structure of the PKA catalytic subunit. The results add new information on the theme of site-specific (auto)phosphorylation by PKA.   相似文献   

17.
The ionization and fragmentation behaviors of carbohydrate derivatives prepared by reaction with 2-aminobenzamide (AB), 1-phenyl-3-methyl-5-pyrazolone (PMP), and phenylhydrazine (PHN) were compared under identical mass spectrometric conditions. It has been shown that the intensities of signals in MS spectra depend on the kind of saccharides investigated and reducing end labels used. PMP sialyllactose, when ionized by ESI/MALDI, produced a mixture of [M + H]+, [M + Na]+, [M - H + 2Na]+ ions in the positive mode and [M - H]-, [M + Na - 2H]- ions in the negative mode. The AB and PHN derivatives formed abundant [M + H]+ and [M - H]- ions in ESI, and by matrix-assisted laser desorption/ionization (MALDI) produced abundant [M + Na]+ ions. PMP- and reduced AB-sialyllactose produced only Y-type fragment ions under both MS/MS sources. In the electrospray ionization (ESI)-MS/MS spectrum of PHN-sialyllactose, abundant ions corresponded to B, Z cleavages and in its MALDI-MS/MS spectrum, the abundant ions were consistent with Y glycosidic cleavages with the concurrence of B, C, and cross-ring fragment ions. In the MALDI-MS spectra of oligosaccharides acquired immediately after derivatization, it was possible to detect only PHN derivatives. After purification, spectra of all three types of derivatives showed high signal-to-noise ratios with the most abundant ions observed for AB reduced saccharides. [M + Na]+ ions were the dominant products and their fragmentation patterns were influenced by the type of the labeling and the kind of oligosaccharide considered. In the MALDI-PSD and -MS/MS spectra of AB-derivatized glycans, higher m/z fragment ions corresponded to B and Y cleavages and the loss of bisecting GlcNAc appeared as a weak signal or was not detected at all. Fragmentation patterns observed in the spectra of hybrid/complex PHN and PMP glycans were more comparable-higher m/z fragments corresponded to B and C glycosidic cleavages. For PHN glycans, the abundance of ions resulting from the loss of bisecting GlcNAc depended on the number of residues linked to the 6-positioned mannose. Also, PHN and PMP derivatives produced cross-ring cleavages with abundances higher than observed in the spectra of AB derivatized oligosaccharides. For high-mannose glycans, the most informative cleavages were provided by AB and PHN type of labeling. Here, PMP produced dominant Y-cleavages from the chitobiose while other ions produced weak signals.  相似文献   

18.
For the analysis of native glycans using tandem mass spectrometry (MS), it is desirable to choose conditions whereby abundances of cross-ring cleavages indicative of branch positions are maximized. Recently, negative ion tandem mass spectrometry has been shown to produce significantly higher abundances of such ions in glycans compared to the positive ion mode. Much of this prior work has concerned fragmentation patterns in asialo glycans. The present work compares the abundances of critical cross-ring cleavage ions using negative mode tandem mass spectrometry for milk oligosaccharides and N-linked glycans. For comparison, product ion formation was studied for deprotonated and nitrated ions formed from asialo glycans and deprotonated ions from sialylated glycans. Breakdown profiles demonstrate clearly that more energy was required to fragment sialylated compounds to the same extent as either their asialo or nitrate adducted counterparts. The extraction of a proton from a ring hydroxyl group during the ionization process may be viewed, qualitatively, as imparting significantly more energy to the ion than would that from a molecule bearing an acidic group, so that acidic glycans are more stable in the gas phase, as the negative charge resides on the carboxyl group. These results have strong practical implications because a major portion of glycans released from mammalian proteins will be sialylated.  相似文献   

19.
An atmospheric pressure (AP) infrared (IR) laser ionization technique, implemented on a quadrupole ion trap mass spectrometer, was used to analyze underivatized, N-linked oligosaccharides in solution. Experiments were conducted on an atmospheric pressure infrared ionization from solution (AP-IRIS) ion source which differed from previous AP IR matrix-assisted laser desorption/ionization (MALDI) interfaces in that the ion source operated in the absence of an extraction electric field with a higher power 2.94 microm IR laser. The general term 'IRIS' is used as the mechanism of ionization differs from that of MALDI, and is yet to be fully elucidated. The AP-IRIS ion source demonstrated femtomole-level sensitivity for branched oligosaccharides. AP-IRIS showed approximately 16 times improved sensitivity for oligomannose-6 and the core-fucosylated glycan M3N2F over optimal results obtainable on a AP UV-MALDI with a 2,4,6-trihydroxyacetophenone matrix. Comparison between IR and UV cases also showed less fragmentation in the IR spectrum for a glycan with a conserved trimannosyl core, core-substituted with fucose. A mixture of complex, high-mannose and sialylated glycans resulted in positive ion mass spectra with molecular ion peaks for each sugar. Tandem mass spectrometry of the sodiated molecular ions in a mixture of glycans revealed primarily glycosidic (B, Y) cleavages. The reported results show the practical utility of AP-IRIS while the ionization mechanism is still under investigation.  相似文献   

20.
The structure of glycans from glycoproteins is highly relevant for their function. We tightly integrate liquid chromatography–mass spectrometry (LC-MS), MS/MS, and nuclear magnetic resonance (NMR) data to achieve a complete characterization of even isobaric glycans differing in only one linkage position or in the substitution in one branch. As example, we analyzed ten desialylated underivatized glycans from bovine fibrinogen. The molecules were separated on a PGC column, and LC-MS data allowed an assignment of the compositions of the glycans. MS/MS data of the same glycans allowed elucidation of sequence and to some extent of branching and linkage. All MS/MS fragmentation methods led to multiple dissociations, resulting in several cases in ambiguous data. The MS/MS data were interpreted both by scientists and automatically by software, and the differential results are compared. Additional data from a tight integration of LC-MS and NMR data resulted in a complete structural characterization of the glycans. The acquisition of simple 1D 1H NMR data led—in combination with LC-MS and MS/MS data—to an unambiguous assignment of the isobaric glycans. Compounds that were not separated in the chromatography could easily be assigned structurally by applying the 3D cross-correlation (3DCC) technology to arrive at NMR spectra of the pure components—without actually separating them. By applying LC-MS, MS/MS, 1D 1H NMR, and 3DCC together, one can assign glycan structures from glycoconjugates with high confidence affording only 200 pmol of glycan material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号