首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Lanthanide elements(Ln)play an important role in industry and agriculture.As a result of the increasing consumption of lanthanides,environmental emission of Ln has become detrimental to the health of flora and fauna.Current methods for trace lanthanides detection mainly rely on sophisticated instruments.In this article,a Ln~(3+)dependent DNAzyme was incorporated into a hydrogel to generate Ln~(3+)sensitive DNAzyme hydrogel for portable colorimetric detection.The enzyme strand and its substrate strand act as crosslinker and functional unit of the hydrogel with polyacrylamide chains as the scaffold and gold nanoparticles(AuNPs)as the indicator of hydrogel stability.Any ions in the Ln~(3+)series can trigger the cleavage of substrate strand by activating the enzyme strand,thereby decreasing the crosslink ratio and leading to collapse of the hydrogel.The release of the encapsulated AuNPs turns the supernatant wine red.Using this colorimetric method,Ln~(3+)can be detected with high sensitivity,with a limit of detection(LOD)of 20 nM for Ce~(3+).The hydrogel responds specifically to any Ln~(3+)ion and works well with the spiked lake sample without the need of instruments and skilled operators.Our results suggest that the lanthanide responsive hydrogel can be used for portable and sensitive detection of Ln~(3+)contamination in the field.  相似文献   

2.
Using a Cu(2+)-dependent DNA ligation DNAzyme, a colorimetric sensor for Cu2+ has been developed based on directed assembly of DNA-functionalized gold nanoparticles by the ligation product, and such ligation DNAzyme-based sensors are intrinsically more sensitive than cleavage DNAzyme systems due to the lack of background.  相似文献   

3.
Miao X  Ling L  Cheng D  Shuai X 《The Analyst》2012,137(13):3064-3069
Copper ion (Cu(2+)) plays an important role in many biological reactions, and a suitable level of Cu(2+) is necessary for the regular metabolism of life. Thus developing a sensitive and simple method for determination of Cu(2+) is essential. Here, a novel and sensitive Cu(2+) sensor was developed based on detecting the average hydrodynamic diameter of AuNPs by using dynamic light scattering (DLS). Cu(2+)-specific DNAzyme was double-strand and could not adsorb on the surface of AuNPs, accordingly AuNPs aggregation would occur with the addition of NaCl. However, Cu(2+) could cleave DNAzyme and release single-stranded DNA (ssDNA) fragments, which could adsorb on the surface of AuNPs and prevent them from aggregation. Such differences in DNA adsorption ability on AuNPs before and after the addition of Cu(2+) affected the disperse state of AuNPs directly, and then affected their average hydrodynamic diameter, which could be detected with the DLS technique. Based upon the above mentioned principle, detection of Cu(2+) could be realized over the range from 100 pM to 2.0 nM, with a linear regression equation of D = 306.73 - 89.66C (C: nM, R = 0.9953) and a detection limit of 60 pM (3δ/slope). Moreover, satisfactory results were obtained when the assay was applied in the detection of Cu(2+) in water samples.  相似文献   

4.
SERS biosensor for sensitive and selective detection of lead ions (Pb(2+)) based on DNAzyme was developed by taking advantage of the specific catalytic reaction of DNAzyme upon binding to Pb(2+) ions. Detection was accomplished by SERS nanoprobe labeled with DNA and Raman reporters for signal amplification.  相似文献   

5.
Qi L  Zhao Y  Yuan H  Bai K  Zhao Y  Chen F  Dong Y  Wu Y 《The Analyst》2012,137(12):2799-2805
In this work, a fluorescent sensing strategy was developed for the detection of mercury(II) ions (Hg(2+)) in aqueous solution with excellent sensitivity and selectivity using a target-induced DNAzyme cascade with catalytic and molecular beacons (CAMB). In order to construct the biosensor, a Mg(2+)-dependent DNAzyme was elaborately designed and artificially split into two separate oligonucleotide fragments. In the presence of Hg(2+), the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction induced the two fragments to produce the activated Mg(2+)-dependent DNAzyme, which would hybridize with a hairpin-structured MB substrate to form the CAMB system. Eventually, each target-induced activated DNAzyme could catalyze the cleavage of many MB substrates through true enzymatic multiple turnovers. This would significantly enhance the sensitivity of the Hg(2+) sensing system and push the detection limit down to 0.2 nM within a 20 min assay time, much lower than those of most previously reported fluorescence assays. Owning to the strong coordination of Hg(2+) to the T-T mismatched pairs, this proposed sensing system exhibited excellent selectivity for Hg(2+) detection, even in the presence of 100 times of other interferential metal ions. Furthermore, the applicability of the biosensor for Hg(2+) detection in river water samples was demonstrated with satisfactory results. These advantages endow the sensing strategy with a great potential for the simple, rapid, sensitive, and specific detection of Hg(2+) from a wide range of real samples.  相似文献   

6.
Yao J  Li J  Owens J  Zhong W 《The Analyst》2011,136(4):764-768
A sensitive and simple assay for the detection of Pb(2+) in aqueous solutions is reported. It takes advantage of the high affinity between single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWCNT) as well as the capability of SWCNT in fluorescence quenching. Lead(II) catalyzes the cleavage of a fluorescently labeled DNA substrate by a DNAzyme, which releases the single-stranded product to be adsorbed onto a SWCNT. The decrease in fluorescence is proportional to the Pb(2+) concentration. Concentrations as low as 1 nM Pb(2+) in water could be detected and the detection range spans over 5 orders of magnitude. The unique combination of Pb-specific DNAzyme with SWCNT produces a universal, facile and cost-effective sensing platform for lead ions. The concept can be applied to the design of detection assays for other metal ions or small molecules.  相似文献   

7.
Wang L  Jin Y  Deng J  Chen G 《The Analyst》2011,136(24):5169-5174
In this paper, we have reported a sensitive assay for fluorescence "turn-on" detection of Pb(2+) in aqueous solutions based on FRET between gold nanorods (GNRs) and the FAM-labeled substrate strand of 8-17DNAzyme. The fluorescence of the FAM-labeled substrate strand is quenched when 8-17DNAzyme is adsorbed on GNRs surface through electrostatic interaction. In the presence of lead ions, the fluorescence is restored due to the decrease of FRET efficiency caused by the specific cleavage of the FAM-labeled substrate strand by the enzyme, which weakens the electrostatic interaction between the GNRs and short FAM-labeled DNA fragment. The interference of eleven common metal ions has been tested, indicating that Pb(2+) can be selectively detected. This method exhibits a high sensitivity for Pb(2+) with a detection limit of 61.8 pM and a linear range from 0.1 nM to 100 nM. It is a simple, sensitive, and selective method for Pb(2+) detection. Moreover, this sensing system obtained satisfying results for Pb(2+) detection in tap water samples.  相似文献   

8.
The combination of high metal selectivity of DNAzymes with the strong distance-dependent optical properties of metallic nanoparticles has presented considerable opportunities for designing colorimetric sensors for metal ions. We previously communicated a design for a colorimetric lead sensor based on the assembly of gold nanoparticles by a Pb(2+)-dependent DNAzyme. However, heating to 50 degrees C followed by a cooling process of approximately 2 h was required to observe the color change. Herein we report a new improved design that allows fast (<10 min) detection of Pb(2+) at ambient temperature. This improvement of sensor performance is a result of detailed studies of the DNAzyme and nanoparticles, which identified "tail-to-tail" nanoparticle alignment, and large (42 nm diameter) nanoparticle size as the major determining factors in allowing fast color changes. The optimal conditions for other factors such as temperature (35 degrees C) and concentrations of the DNAzyme (2 microM), its substrate (3 nM), and NaCl (300 mM) have also been determined. These results demonstrate that fundamental understanding of the DNAzyme biochemistry and nanoparticle science can lead to dramatically improved colorimetric sensors.  相似文献   

9.
A lateral flow nucleic acid biosensor based on copper-dependent DNA-cleaving DNAzyme and gold nanoparticles has been developed for the visual detection of copper ions (Cu(2+)) in an aqueous solution with a detection limit of 10 nM.  相似文献   

10.
Immobilization of DNAzyme catalytic beacons on PMMA for Pb2+ detection   总被引:3,自引:0,他引:3  
Due to the numerous toxicological effects of lead, its presence in the environment needs to be effectively monitored. Incorporating a biosensing element within a microfluidic platform enables rapid and reliable determinations of lead at trace levels. A microchip-based lead sensor is described here that employs a lead-specific DNAzyme (also called catalytic DNA or deoxyribozyme) as a recognition element that cleaves its complementary substrate DNA strand only in the presence of cationic lead (Pb(2+)). Fluorescent tags on the DNAzyme translate the cleavage events to measurable, optical signals proportional to Pb(2+) concentration. The DNAzyme responds sensitively and selectively to Pb(2+), and immobilizing DNAzyme in the sensor permits both sensor regeneration and localization of the detection zone. Here, the DNAzyme has been immobilized on a PMMA surface using the highly specific biotin-streptavidin interaction. The strategy includes using streptavidin physisorbed on a PMMA surface to immobilize DNAzyme both on planar PMMA and on the walls of a PMMA microfluidic device. The immobilized DNAzyme retains its Pb(2+) detection activity in the microfluidic device and can be regenerated and reused. The DNAzyme shows no response to other common metal cations and the presence of these contaminants does not interfere with the lead-induced fluorescence signal. While prior work has shown lead-specific catalytic DNA can be used in its solubilized form and while attached to gold substrates to quantitate Pb(2+) in solution, this is the first use of the DNAzyme immobilized within a microfluidic platform for real time Pb(2+) detection.  相似文献   

11.
Inspired by recent interest in DNAzymes as transition metal ion sensors, a survey of the effects of various transition metals on the intramolecular cleavage rate of an imidazole modified, M(2+)-independent, self-cleaving "9(25)-11" DNA is reported. In particular, 9(25)-11 activity was strongly inhibited by Hg(2+)(K(d)(APP)= 110 +/- 9 nM). It is postulated that the affinity and selectivity of 9(25)-11 for Hg(2+) stems from the fact that this synthetically modified DNAzyme contains imidazoles. This study demonstrates the utility of modified nucleotides in developing DNAzyme sensors for metals ions, especially those for which unmodified nucleic acids might not serve as inherently good ligands.  相似文献   

12.
The magnetic movement and thermal diffusion have been studied for Cu(2+) ions in solution. The Cu(2+) ion solution was spotted on the silica gel support and exposed to the magnetic field of 410 kOe(2) cm(-1) intensity x gradient. The Cu(2+) ions were attracted toward the filed center. The moving distance and diffusing distance were observed at various time intervals. It is shown that the Cu(2+) ions move in a large group composed of Cu(2+) ions and H(2)O molecules. The size of the group is approximately estimated to be of 4.6 mum diameter by the analysis of the drift velocity of the group and the Cu(2+) ion concentration in the group.  相似文献   

13.
In the present study, surface-enhanced Raman spectra of a bifunctional Raman reporter, 2-mercaptobenzimidazole, has been found to be responsive exclusively towards Cu(2+) ions while the reporter remains anchored on the Au nanoparticle surface. Thus a specific Cu(2+)-ion-detection protocol emerges. The simplicity, sensitivity, and reproducibility of the method allow routine and quantitative detection of Cu(2+) ions. An interference study involving a wide number of other metal ions shows the procedure to be uniquely selective and analytically rigorous. A theoretical study was carried out to corroborate the experimental results. Finally, the method is promising for real-time assessment of Cu(2+) ions in aqueous samples and also has the ability to discriminate Cu(I) and Cu(II) ions in solution.  相似文献   

14.
New amphiphilic gelators that contained both Schiff base and L-glutamide moieties, abbreviated as o-SLG and p-SLG, were synthesized and their self-assembly in various organic solvents in the absence and presence of metal ions was investigated. Gelation test revealed that o-SLG formed a thermotropic gel in many organic solvents, whilst p-SLG did not. When metal ions, such as Cu(2+), Zn(2+), Mg(2+), Ni(2+), were added, different behaviors were observed. The addition of Cu(2+) induced p-SLG to from an organogel. In the case of o-SLG, the addition of Cu(2+) and Mg(2+) ions maintained the gelating ability of the compound, whilst Zn(2+) and Ni(2+) ions destroyed the gel. In addition, the introduction of Cu(2+) ions caused the nanofiber gel to perform a chiral twist, whilst the Mg(2+) ions enhanced the fluorescence of the gel. More interestingly, the Mg(2+)-ion-mediated organogel showed differences in the fluorescence quenching by D- and L-tartaric acid, thus showing a chiral recognition ability.  相似文献   

15.
A novel nucleic acid hairpin structure composed of Pb(2+)-dependent DNAzyme and HRP-mimicking DNAzyme was developed. This hairpin structure can be used as a sensor for the detection of Pb(2+) based on colorimetry.  相似文献   

16.
The different ions doped KMgF(3) single crystals are prepared by the vertical Bridgman method. The near-infrared absorption spectra for different parts of all as-growth crystals indicate that there is the best transparency in middle part. The correlation between the vibronic frequencies of Eu(2+) and the site displacement of Cu(+) co-doped ions is firstly studied, which indicates that Cu(+) ions replace the site of the Mg(2+) ions. The co-doped Eu(2+) counteracts the charge misfit causing by the replacement of Mg(2+) with Cu(+). The overlapping of the emission spectra of the Eu(2+) and the excitation spectra of the Cu(+) results in the energy transfer from Eu(2+) to Cu(+).  相似文献   

17.
Liu Y  Ingle JD 《Talanta》1989,36(1-2):185-192
Sample solutions titrated with Cu(2+) ions are passed sequentially through two ion-exchange columns in an automated flow system. The first column is packed with Chelex-100 resin and retains Cu(2+) ions that are free or derived from copper complexes that dissociate in the column. The second column is packed with AG MP-1 anion-exchange resin and retains negatively charged Cu(II) complexes. The retained copper species are then eluted from the columns and determined on-line with a flame atomic-absorption spectrophotometer. It is necessary to correct for a small fraction of free Cu(2+) ions that pass through the first column and are retained by the second column. The Cu(II)-complexing capacity of sample solutions is determined from plots of the concentration ratio of free Cu(2+) ions to Cu(II) complexes vs. the concentration of free Cu(2+) ions. Conditional stability constants of the copper complexes are also estimated from these plots. The complexing capacity of sample solutions is also determined rapidly by measuring the concentration of complexed Cu(II) after spiking the sample with an excess of Cu(2+) ions. The sample solutions tested were 4.0muM NTA, 4.0-mg/l. humic acid, and a river water.  相似文献   

18.
Amyloid-beta (Abeta) peptide is the principal constituent of plaques associated with Alzheimer's disease and is thought to be responsible for the neurotoxicity associated with the disease. Metal ions have been hypothesized to play a role in the formation and neurotoxicity of aggregates associated with Alzheimer's disease (Bush, A. I.; et al. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 11934). Elucidation of the chemistry through which transition-metal ions participate in the assembly and toxicity of Abeta oligomers is important to drug design efforts if inhibition of Abeta containing bound metal ions becomes a treatment for Alzheimer's disease. In this paper, we report electron paramagnetic resonance (EPR) spectroscopic characterization of Cu(2+) bound to soluble and fibrillar Abeta. Addition of stoichiometric amounts of Cu(2+) to soluble Abeta produces an EPR signal at 10 K with observable Cu(2+) hyperfine lines. A nearly identical spectrum is observed for Abetafibrils assembled in the presence of Cu(2+). The EPR parameters are consistent with a Type 2 Cu(2+) center with three nitrogen donor atoms and one oxygen donor atom in the coordination sphere of Cu(2+): g( parallel) = 2.26 and A( parallel) = 174 +/- 4 G for soluble Abeta with Cu(2+), and g( parallel) = 2.26 and A( parallel) = 175 +/- 1 G for Abeta fibrils assembled with Cu(2+). Investigation of the temperature dependence of the EPR signal for Cu(2+) bound to soluble Abetaor Cu(2+) in fibrillar Abeta shows that the Cu(2+) center displays normal Curie behavior, indicating that the site is a mononuclear Cu(2+) site. Fibrils assembled in the presence of Cu(2+) contain one Cu(2+) ion per peptide. These results show that the ligand donor atom set to Cu(2+) does not change during organization of Abetamonomers into fibrils and that neither soluble nor fibrillar forms of Abeta(1-40) with Cu(2+) contain antiferromagnetically exchange-coupled binuclear Cu(2+) sites in which two Cu(2+) ions are bridged by an intervening ligand.  相似文献   

19.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) was used to investigate metal ion interactions of the 18 amino acid peptide fragment B18 (LGLLLRHLRHHSNLLANI), derived from the membrane-associated protein bindin. The peptide sequence B18 represents the minimal membrane-binding motif of bindin and resembles a putative fusion peptide. The histidine-rich peptide has been shown to self-associate into distinct supramolecular structures, depending on the presence of Zn(2+) and Cu(2+). We examined the binding of B18 to the metal ions Cu(2+), Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+). For Cu(2+), we compared the metal binding affinities of the wild-type B18 peptide with those of its mutants in which one, two or three histidine residues have been replaced by serines. Upon titration of B18 with Cu(2+) ions, we found sequential binding of two Cu(2+) ions with dissociation constants of approximately 34 and approximately 725 micro M. Mutants of B18, in which one histidine residue is replaced by serine, still exhibit sequential binding of two copper ions with affinities for the first Cu(2+) ion comparable to that of wild-type B18 peptide, but with a greatly reduced affinity for the second Cu(2+) ion in mutants H112S and H113S. For mutants in which two histidines are replaced by serines, the affinity for the first Cu(2+) ion is reduced approximately 3-10 times in comparison with B18. The mutant in which all three histidine residues are replaced by serines exhibits an approximately 14-fold lower binding for the first Cu(2+) ion compared with B18. For the other metal ions under investigation (Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+)), a modest affinity to B18 was detected binding to the peptide in a 1 : 1 stoichiometry. Our results show a high affinity of the wild-type fusogenic peptide B18 for Cu(2+) ions whereas the Zn(2+) affinity was found to be comparable to that of other di- and trivalent metal ions.  相似文献   

20.
X-band and Q-band electron paramagnetic resonance (EPR) spectra of Cu(2+) in BaF(2) crystal were recorded in the temperature range of 4.2-200 K. Spin-Hamiltonian parameters of single Cu(2+) complexes and of Cu(2+)-Cu(2+) pairs were derived and discussed. A special attention was paid to the dimeric species. Their molecular ground state configuration was found as having antiferromagnetic intradimer coupling with the singlet-triplet splitting J=-35 cm(-1). The zero-field splitting being D=0.0365 cm(-1) at 4.2 K increases with temperature as an effect of thermal population of excited dimer configurations. Electron spin echo (ESE) method was used for measurements of electron spin lattice and phase relaxation. The spin-lattice relaxation data show that except for coupling to the host lattice phonons the Cu(2+) ions are involved in local mode motions with energy of 82 cm(-1). Phase relaxation (ESE dephasing) of single Cu(2+) ions is due to spin diffusion at low temperatures. This relaxation is hampered for temperatures higher than 30 K due to the triplet state population of neighboring Cu(2+)-Cu(2+) dimers, which disturb dipolar coupling between Cu(2+) ions. For higher temperatures the relaxation is dominated by Raman T(1) processes. Fourier transform ESE spectrum displays dipolar Cu-F splitting which allowed determination of the off-center shift of Cu(2+) as delta(s)=0.132 nm. The dynamical effects observed in EPR spectra and in electron spin relaxation both for single Cu(2+) ions and Cu(2+)-Cu(2+) pairs are discussed as due to jumps between six off-center positions in the crystal unit cell and jumps between various dimer configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号