首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yin J  Cao H 《Inorganic chemistry》2012,51(12):6529-6536
We report here for the first time the hollow, metastable, single-crystal, rhombohedral In(2)O(3) (rh-In(2)O(3)) nanocrystals synthesized by annealing solvothermally prepared InOOH solid nanocrystals under ambient pressure at 400 °C, through a mechanism of the Kirkendall effect, in which pore formation is attributed to the difference in diffusion rates of anions (OH(-) and O(2-)) in a diffusion couple. The InOOH solid nanocrystals were prepared via a controlled hydrolysis solvothermal route by using In(NO(3))(3)·4.5H(2)O as a starting material and glycerol-ethanol as a mixed solvent. The glycerol-ethanol mixed solvent plays a key role on the formation of the intermediate InOOH, thus the final product of rh-In(2)O(3). The as-synthesized In(2)O(3) nanocrystals present excellent photocatalytic degradation of rhodamine B (RhB) and methylene blue (MB) dyes, which present ~92% degradation of RhB or MB after 4 or 3 h reaction in the presence of the as-synthesized In(2)O(3) nanocrystals, respectively.  相似文献   

2.
Layered double hydroxide Cd(1)(-)(x)()Al(x)()(OH)(2)(DS)(x)().3.0H(2)O (CdAlDS) and a related hydroxide salt compound Cd(2)(OH)(3)(DS).2.5H(2)O (CdDS), where DS stands for dodecyl sulfate sandwiched between two adjacent inorganic layers, have been synthesized and used as precursors for CdS nanoparticle growth. Through a gas/solid reaction, CdS nanocrystals implanted in the layer matrixes of the layered double hydroxides are grown, and the sizes of the nanocrystals vary in the range of 3-6 nm in diameter. The presence of trivalent Al cations in the layered double hydroxide can be taken advantage of to control the size of the CdS nanocrystals, and it also helps to prevent the formed nanocrystals from extraction from the solid matrixes. The nano-CdS implanted composite exhibits high photocatalytic activity for degradation of the nonbiodegradable rhodamine B under both UV and visible irradiations.  相似文献   

3.
The shape of Pd nanocrystals (NCs) can be controlled by combination of oleylamine (OAm) and alkylammonium alkylcarbamate (AAAC), and Pd spheres, tetrahedra and multipods have been synthesized. The multipods and tetrahedra are much more active than the spheres for hydrogenation reactions.  相似文献   

4.
Ni(6) clusters of the general formula [{Ni(3)L(n)(OAc)(OH)}(2)(X)(OAc)(H(2)O)(2)] (n = 1, 2; X = Cl(-) or N(3)(-), (L(n))(3-) = hexadentate tritopic ligands) can be isolated by spontaneous self-assembly, from mixtures of Ni(OAc)(2), H(3)L(n), NMe(4)OH·5H(2)O and NaX in adequate molar ratios. Thus, four new hexanuclear complexes [{Ni(3)L(1)(OAc)(OH)}(2)Cl(OAc)(H(2)O)(2)]·7.5H(2)O (1·7.5H(2)O), [{Ni(3)L(2)(OAc)(OH)}(2)Cl(OAc)(H(2)O)(2)]·2H(2)O·7.5MeOH (2·2H(2)O·7.5MeOH), [{Ni(3)L(1)(OAc)(OH)}(2)(N(3))(OAc)(H(2)O)(2)]·6H(2)O (3·6H(2)O) and [{Ni(3)L(2)(OAc)(OH)}(2)(N(3))(OAc)(H(2)O)(2)]·4H(2)O (4·4H(2)O) were obtained and fully characterised. 1·7.5H(2)O and 2·2H(2)O·7.5MeOH were isolated in the form of single crystals, the latter losing solvate on drying, to yield 2·2H(2)O. Recrystallisation of 3·6H(2)O in MeCN/MeOH also generates single crystals of 3·H(2)O·2MeOH·2MeCN. Their X-ray characterisation shows that these Ni(6) clusters can be considered to be built from two triangular trinuclear [Ni(3)L(n)(OAc)(OH)](+) subunits with different connectors. In addition, these studies demonstrate that the (L(n))(3-) ligands behave as trinucleating, adopting such a conformation that induces chirality in the isolated compounds. In this way, 3·H(2)O·2MeOH·2MeCN appears particularly interesting, since it emerges as homochiral after undergoing spontaneous resolution upon crystallisation. The magnetic characterisation of 1·7.5H(2)O to 3·6H(2)O reveals that the three compounds present an overall antiferromagnetic coupling. The intricate magnetic behaviour of these clusters, mediated by a total of 14 bridges of different kinds, was analysed and satisfactorily interpreted in light of DFT calculations.  相似文献   

5.
In order to shed light on the proton distributions and order/disorder in high-pressure delta-Al(OH)3 and delta-AlOOH phases, two-dimensional, high-resolution 1H CRAMPS (FSLG)-MAS NMR and 27Al 3QMAS NMR spectra have been obtained. For delta-Al(OH)3, the 1H CRAMPS-MAS NMR revealed two peaks with an intensity ratio close to 2:1. The 27Al MAS and 3QMAS NMR suggest a single Al site with a well-defined local structure. For delta-AlOOH, the 1H and 27Al NMR indicate the presence of a single H and Al site each. These results are consistent with crystal structures refined from X-ray diffraction. For comparison, 1H MAS and CRAMPS-MAS NMR spectra were also obtained for several other hydroxides/oxyhydroxides, including In(OH)3 and InOOH that have similar structures to delta-Al(OH)3 and delta-AlOOH, respectively. These data not only provide additional insights into the proton distributions in these important crystal structure classes but also together provide a better defined quantitative correlation between 1H chemical shift and hydrogen-bonding O...O distance.  相似文献   

6.
The geometries, energies and vibrational frequencies of various polyborates in both gaseous and aqueous phase were calculated at the B3LYP/aug-cc-pVDZ level. The calculated total symmetrical stretching Raman shifts of B(OH)(3), B(OH)(4)(-), B(2)O(OH)(4), B(2)O(OH)(5)(-), B(2)O(OH)(6)(2-), B(3)O(3)(OH)(3), B(3)O(3)(OH)(4)(-), B(3)O(3)(OH)(5)(2-), B(3)O(3)(OH)(6)(3-), B(4)O(5)(OH)(4)(2-) and B(5)O(6)(OH)(4)(-) were assigned to 877.40, 735.33, 785.22, 792.90, 696.79, 587.72, 599.06, 740.16, 705.01, 551.67 and 521.04cm(-1), respectively. The results can be used as the characteristic frequency for polyborates in aqueous phase at room temperature. At least six types of polyborates B(OH)(3), B(OH)(4)(-), B(3)O(3)(OH)(4)(-), B(3)O(3)(OH)(5)(2-), B(4)O(5)(OH)(4)(2-) and B(5)O(6)(OH)(4)(-), occur in aqueous solutions at ambient temperature. The chemical species distribution and the relevant interaction mechanisms among polyborates in the solutions were also suggested.  相似文献   

7.
The reactions of boron halides with free base porphyrins under conditions where partial hydrolysis of the boron halides can occur give diboron porphyrin complexes containing BOB moieties in which each boron is bonded to two porphyrin nitrogen atoms. BF(3).OEt(2) with H(2)(por) gives B(2)OF(2)(por) (por = tpp, ttp, tpClpp, oep) which has an asymmetric structure in which one boron lies in the porphyrin plane (B(ip)) while the other lies above it (B(oop)). BCl(3).MeCN with H(2)(por) gives B(2)O(2)(BCl(3))(2)(por) which contains a four-membered B(2)O(2) ring and is stable only in the presence of excess BCl(3). BBr(3) with Li(2)(tpClpp) gives the dicationic complex [B(2)O(tpClpp)](2+) as its [BBr(4)](-) salt, and is the first example of a boron porphyrin containing three-coordinate boron to be structurally characterised. B(2)O(2)(BCl(3))(2)(por) can be chromatographed on basic alumina to give the hydroxyboron complex B(2)O(OH)(2)(por), which is deduced from its NMR spectra and DFT calculations to have a structure analogous to B(2)OF(2)(por). The OH protons are shifted upfield to near delta -4 (B(oop)-OH) and -10 (B(ip)-OH) by the diamagnetic porphyrin ring current. The reaction of either B(2)O(2)(BCl(3))(2)(por) or B(2)O(OH)(2)(por) (por = ttp, tpClpp) with alcohols (ROH, R = Et, 4-C(6)H(4)CH(3)) gives B(2)O(OR)(2)(por), which can in turn be converted to B(2)O(OR)(OH)(por) by repeated chromatography. The reaction of PhBCl(2) with H(2)(por) (por = ttp, tpClpp) gives B(2)O(Ph)(OH)(por) which has been characterised by spectroscopy in concert with DFT calculations. It is a further example of the B(2)OF(2)(por) structural type, in which the phenyl group is coordinated to the out-of-plane boron and the OH group to the in-plane boron, as are its derivatives B(2)O(Ph)(X)(tpClpp) (X = F, OEt). Steric drivers for the facile hydrolysis of haloboron porphyrins relative to their dipyrromethene and expanded porphyrin counterparts are discussed.  相似文献   

8.
Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.  相似文献   

9.
Guo X  Zhu G  Sun F  Li Z  Zhao X  Li X  Wang H  Qiu S 《Inorganic chemistry》2006,45(6):2581-2587
A series of microporous lanthanide metal-organic frameworks, Tb3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(H2O) (1) and Ln3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(C2H5OH)(0.5)(H2O)(0.5) [Ln = Dy (2), Ho (3), Er (4)], have been synthesized by the reaction of the lanthanide metal ion (Ln3+) with 1,4-benzenedicarboxylic acid and triethylenetetramine in a mixed solution of N,N'-dimethylformamide (DMF), water, and C(2)H(5)OH. X-ray diffraction analyses reveal that they are extremely similar in structure and crystallized in triclinic space group P. An edge-sharing metallic dimer and 4 metallic monomers assemble with 18 carboxylate groups to form discrete inorganic rod-shaped building units [Ln6(CO2)18], which link to each other through phenyl groups to lead to three-dimensional open frameworks with approximately 4 x 6 A rhombic channels along the [0,-1,1] direction. A water sorption isotherm proves that guest molecules in the framework of complex 1 can be removed to create permanent microporosity and about four water molecules per formula unit can be adsorbed into the micropores. These complexes exhibit blue fluorescence, and complex 1 shows a Tb3+ characteristic emission in the range of 450-650 nm.  相似文献   

10.
Abstract

We have recently described a technique for the generation of alkyl metaphosphates, ROPO2, by thermolysis of phosphoramidic acids of structure ROP(O)(OH)NHR (1) [1]. We have now successfully shown that alkyl metathiophosphates, ROP(S)(O), which have received but little previous consideration [2], can be generated by the same approach. Compounds 2 (Ad = 1-adamantyl) and 3 were synthesized for this study. Both were easily fragmented on heating in an inert solvent. When an alcohol trapping agent was present each gave EtO-P(S)(OR)(OH) consistent with EtOP(S)(O) as an intermediate. In the absence of a trap, 2 was cleanly converted to the pyrophosphate derivative 4 in a process established to follow first-order kinetics, thus proving that decomposition of 2 proceeded by elimination of EtOP(S)(O). Compound 3 decomposed by mixed first and second order kinetics, and gave a more complex mixture of products. EtOP(S)(O) generated from 2 phosphorylated the OH groups on the surface of silica gel, a process previously demonstrated for ROPO2. With a monoester of phosphoric acid, the mixed monothiopyrophosphate EtOP(S)(OH)-O-P(O)(OH)(OR) was formed in a new synthetic approach to these valuable compounds.  相似文献   

11.
Three new metal-organic frameworks [MOF-525, Zr(6)O(4)(OH)(4)(TCPP-H(2))(3); MOF-535, Zr(6)O(4)(OH)(4)(XF)(3); MOF-545, Zr(6)O(8)(H(2)O)(8)(TCPP-H(2))(2), where porphyrin H(4)-TCPP-H(2) = (C(48)H(24)O(8)N(4)) and cruciform H(4)-XF = (C(42)O(8)H(22))] based on two new topologies, ftw and csq, have been synthesized and structurally characterized. MOF-525 and -535 are composed of Zr(6)O(4)(OH)(4) cuboctahedral units linked by either porphyrin (MOF-525) or cruciform (MOF-535). Another zirconium-containing unit, Zr(6)O(8)(H(2)O)(8), is linked by porphyrin to give the MOF-545 structure. The structure of MOF-525 was obtained by analysis of powder X-ray diffraction data. The structures of MOF-535 and -545 were resolved from synchrotron single-crystal data. MOF-525, -535, and -545 have Brunauer-Emmett-Teller surface areas of 2620, 1120, and 2260 m(2)/g, respectively. In addition to their large surface areas, both porphyrin-containing MOFs are exceptionally chemically stable, maintaining their structures under aqueous and organic conditions. MOF-525 and -545 were metalated with iron(III) and copper(II) to yield the metalated analogues without losing their high surface area and chemical stability.  相似文献   

12.
Chen Q  Lin JB  Xue W  Zeng MH  Chen XM 《Inorganic chemistry》2011,50(6):2321-2328
A microporous coordination polymer, namely, [Co(3)(ina)(4)(OH)(C(2)H(5)OH)(3)](NO(3))·C(2)H(5)OH·(H(2)O)(3) (1, or MCF-38, ina = isonicotinate), with 8-connected {Co(3)(OH)} clusters as the structural secondary building units, has been solvothermally synthesized. The hydroxo-centered Co(II) cluster involves multiple active metal sites. The interesting apical ligand substitutions have been directly observed, and the corresponding products of [Co(3)(ina)(4)(OH)(G)(x)(H(2)O)(n)](NO(3))·G·(H(2)O)(m) (1 ? PrOH, G = PrOH, x = 2, n = 1, m = 3; 1 ? BuOH, G = BuOH, x = 2, n = 1, m = 1, and 1 ? MeOH, G = MeOH, x = 3, n = 0, m = 7) have also been obtained by solvothermal syntheses or crystal-to-crystal transformations. High-pressure H(2) adsorption measurement at 77 K reveals that activated 1 can absorb 2.2 wt % H(2) at 5 bar. The relative H(2) absorption at low pressure (86% of the storage capacity at 1 bar) is higher than the corresponding values reported for some typical porous coordination polymers. The magnetic studies of 1 show a dominant antiferromagnetic coupling between Co(II) ions of intra- and inter-cluster.  相似文献   

13.
Aqueous peroxotungstates have been studied from pH 0.5 to 9.0, over a range of peroxide concentrations. Although equilibria are not always established, many anions can be identified by 17O NMR because the ratio of deltaO(W anion)/deltaO(known Mo anion) is consistently 79 +/- 3%. They are [WO3(HO2)]-; [WO(OH)(O2)2]-; [WO(OH2)(O2)2]0; [W2O3(O2)4]2-; [W2O3(OH)(O2)4]3-; [W4O12(O2)2]4-; [W7O23(O2)]6- and [W7O22(O2)2]6-. Their pKa values, where measurable, are about 2 units lower than the corresponding peroxomolybdates, e.g. 0.0 for [WO(OH2)(O2)2]0 and 8.0 for [W2O3(O2)4]2-. Other peroxotungstate species are also present but can only be broadly identified. These include Keggin structures with relatively low peroxo content, and a very unsymmetrical anion appearing at pH ca. 7 that bears no obvious structural relationship to any species previously reported. The main product from the reaction of powdered W metal with 30% aqueous peroxide is provisionally identified as the symmetrical anion [W6O13(OH)2(OH2)2(O2)5]2-, although other minor species are also formed, probably having fewer peroxo substituents.  相似文献   

14.
The reaction of [NiBr(2)(bpy)(2)] (bpy = 2,2'-bipyridine) with organic phosphinic acids ArP(O)(OH)H [Ar = Ph, 2,4,6-trimethylphenyl (Mes), 9-anthryl (Ant)] leads to the formation of binuclear nickel(II) complexes with bridging ArP(H)O(2)(-) ligands. Crystal structures of the binuclear complexes [Ni(2)(μ-O(2)P(H)Ar)(2)(bpy)(4)]Br(2) (Ar = Ph, Mes, Ant) have been determined. In each structure, the metal ions have distorted octahedral coordination and are doubly bridged by two arylphosphinato ligands. Magnetic susceptibility measurements have shown that these complexes display strong antiferromagnetic coupling between the two nickel atoms at low temperatures, apparently similar to binuclear nickel(II) complexes with bridging carboxylato ligands. Cyclic voltammetry and in situ EPR spectroelectrochemistry show that these complexes can be electrochemically reduced and oxidized with the formation of Ni(I),Ni(0)/Ni(III) derivatives.  相似文献   

15.
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.  相似文献   

16.
Cong R  Yang T  Wang Z  Sun J  Liao F  Wang Y  Lin J 《Inorganic chemistry》2011,50(5):1767-1774
Ln(2)B(6)O(10)(OH)(4)?H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) ?, and β = 108.29(3)°. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)?H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(6)O(10)(OH)(4)?H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)?H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11)(OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)?H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)?H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) → (7)F(2) transition), which may be potential red phosphors.  相似文献   

17.
Five salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C6H2(COO)4H4], have been synthesized and investigated by infrared and Raman spectroscopy and by single crystal X-ray diffraction methods: sodium salt [Na2(H2O)2][C6H2(COO)4H2], potassium salt [K(H2O)3][C6H2(COO)4H3] and transition metal salts [M(H2O)6][C6H2(COO)4H2], which M = Mn, Ni and Zn. Crystal structures of all five compounds show short intramolecular asymmetric hydrogen bonds (SHB) between adjacent carboxyl groups with O...O distance average of 2.40 A. The Raman and infrared spectra reported indicate the presence of short hydrogen bonds in all salts, in agreement with the X-ray data. The O-H stretching mode [nu(OH)] had been observed at about 2500 cm(-1). Deuterated analogues were synthesized and their Raman spectra show that nu(OH)/nu(OD) ratio average is about unit. The symmetric [nu(sym)(O..H..O)] and asymmetric [nu(asym)(O..H..O)] stretching modes have been attributed about 300 and 870 cm(-1), respectively, in all salts, and for deuterated analogues, the ratio nu(OH)/nu(OD) to nu(sym)(O..H..O, O..D..O) is close to unit like it occurs in nu(OH). The vibrational modes, mainly SHB modes, are tentatively assigned by molecular orbital ab initio calculations of pyromellitic acid and anions [C6H2(COO)4H3]- and [C6H2(COO)4H2]2-. Geometry optimizations showed a good agreement with experimental data. Frequency calculation confirms the assignment of specific vibrational modes. Ab initio calculations show that nu(C=O) and nu(sym)(COO) are strongly coupled with in plane OH bending [delta(OH)]. In Raman spectra of deuterated analogues is observed a frequency shift of these bands.  相似文献   

18.
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.  相似文献   

19.
The free solvated ligand, H(2)bna.CH(3)OH.H(2)O (1), and its dimeric complex, [Cd(2)(bna)(2)(H(2)O)(6)] (2) (bna = 2,2'-dihydroxy-[1,1']-binaphthalene-3,3'-dicarboxylate), were obtained by evaporation of the solutions, while two new d(10) metal-hydroxy cluster-based coordination polymers, namely [Cd(8)(OH)(4)(H(2)O)(10)(bna)(6)].17H(2)O (3) and [Hpy](2)[Zn(4)(OH)(2)(H(2)O)(2)(bna)(4)].2H(2)O.2CH(3)CN (4), were obtained by a hydrothermal route. All the compounds have been characterized by X-ray crystallography and photoluminescence measurements. Compound 1 consists of a three-dimensional, hydrogen-bonded supramolecular array, 2 exhibits a dimeric molecule featuring a square motif organized by two Cd(II) atoms and two bna ligands each at the corner, and 3 contains unprecedented [Cd(8)(micro(3)-OH)(2)(micro-OH)(2)(micro-H(2)O)(2)](12+) octanuclear metallacrown cores which are interlinked through bna to afford a two-dimensional structure, while 4 features layers with butterfly-shaped [Zn(4)(micro(3)-OH)(2)](6+) clusters. All the complexes display photoluminescent properties in the blue/green range. The manifestation of photoluminescence, as probed by molecular orbital calculations performed on the complexes and also on hypothetical multinuclear complexes, is attributed to a ligand-to-metal charge-transfer mechanism. In addition to presenting a new approach for the study of the photoluminescent properties of metal-cluster-based coordination polymers by using simple model compounds, the study also reveals the dominant role of the structure of the ligand over that of the d(10) metal-hydroxy (or oxy) cluster and the presence of the cluster significantly increasing the emission lifetime.  相似文献   

20.
A series of carboxyethylphosphonate hybrid materials has been prepared: Mn(II)(O3PCH2CH2COOH) *H2O (1), Mn(III)(OH)(O3PCH2CH2COOH)*H2O (2), Al3(III)(OH)3(O3PCH2CH2CO2)2 *3H2O (3) and Cr2(III)(OH)3(O3PCH2CH2CO2) *3H2O (4). Compounds 1 and 2 were synthesized from Mn(III)(CH3COO)3 *2H2O under hydrothermal, or refluxing treatments, respectively. The crystal structures of the manganese-bearing solids have been solved ab initio from laboratory X-ray powder diffraction data and refined by the Rietveld method. 1 crystallises in a orthorhombic cell and 2 in monoclinic symmetry. Both solids have inorganic 2D layered structures with the acid carboxylic groups pointing towards the interlayer space, and the layers linked only through hydrogen bonds. The inorganic layers of these compounds are formed by manganese atoms in distorted octahedral environments linked together by the phosphonate groups. The crystal structure of 3 has been solved ab initio from synchrotron X-ray powder diffraction data. This solid shows a pillared structure with the phosphonate and carboxylate groups cross-linking the inorganic layers. These layers contain chains of aluminium octahedra running parallel to each other. 4 is amorphous and the IR-UV-VIS spectra suggest a framework with Cr(III) cations in octahedral environments. Thermal, spectroscopic and magnetic data for manganese and chromium compounds as well as the structural details of these solids are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号