首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular motion in ultradispersed polytetrafluroethylene obtained by special gas-phase technology has been studied experimentally and theoretically based on a temperature dependence of the second moment of 19F NMR spectra and the time of spin-lattice relaxation. The results of observations are interpreted as the consequence of reorientation motion of CF2 groups around the axis of macromolecules at low temperature and of translational motion of macromolecules in the high temperature region. Qualitative differences from the molecular motion in industrial polytetrafluoroethylene (teflon-4) were detected and parameters of dynamic processes determined.  相似文献   

2.
The diglycidyl ether of bisphenol-A, an uncured epoxy resin, has been studied by pulsed NMR. Values of the proton relaxation times T1, T1p, and T2 have been measured over the temperature range from ?160 to 200°C. The resin was studied in its monomeric form and in two mixtures containing higher oligomers. The relaxation times are interpreted in terms of the molecular motion in the resins. The motion responsible for relaxation in the solid monomer form is thought to be methyl group reorientation at low temperatures and general molecular motion at high temperatures. The motions are characterized by activation energies of 5 kcal/mole and 33 kcal/mole, respectively. The solid mixtures exhibit similar effects to the monomer, but an additional relaxation mechanism is observed which is attributed to segmental motion. This motion is characterized by an activation energy of 12–15 kcal/mole. The self-diffusion coefficient was measured in the liquid monomer, and the activation energy for self-diffusion is found to be 11 kcal/mole.  相似文献   

3.
4.
Broad-line 1H NMR spectra of linear polyethylene at temperatures in the α-transition range can be analyzed in terms of contributions from the crystalline and noncrystalline components provided molecular motion in the crystalline region is adequately considered. The spectrum of solid n-C32H66 or n-C44H90 prior to melting is used to take account of the contribution of the crystalline region of the polymer to molecular motions. The temperature dependence of the component distribution in the polymer is briefly discussed for a wide range of temperatures, together with previously reported results at low temperatures. The noncrystalline component is in a rigid glassy state at very low temperatures but with rising temperature it transforms to a mobile glassy state with restricted molecular motion, and transforms partially to the rubbery state at high temperature. The crystalline component remains rigid at low temperature, but some molecular motion is associated with it at higher temperatures in the α-transition range.  相似文献   

5.
To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether of polyethylene glycols as precursors of the system were synthesized by a two-step process. The presumed structure of the product was characterized, by ~(13)C, ~1H NMR and IR spectroscopy. It was found that a side-reaction occurred between the secondary hydroxyl group of PEG-chlorohydrin and epichlorohydrin in some degree, resulting in a by- product containing—CH_2Cl side group. By selecting a characteristic signal, which is undistorted by the increase in the length of CH_2 CH_2—O segment, a ~1H NMR approach of determining the equivalent epoxy weight (EEW) was proposed. The method is valid to specimens even though the EEW is as high as 2,000. The examination of the specimens by DSC showed that epoxidation greatly depressed the crystallinity of the PEG's, whereas the T_g was raised.  相似文献   

6.
A mixed-acid monounsaturated lecithin, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphorylcholine (POL), has been synthesized by phospholipase A2 digestion of 1,2 dipalmitoyl-sn-glycero-3-phosphorylcholine followed by reacylation of the lysolecithin with oleic anhydride. 1H (90 MHz) and 13C (25.2 MHz) NMR spectra of POL in CDCl3 solution and in sonicated dispersions in 2H2O have been obtained, and spin-lattice relaxation times measured. The relaxation times were characteristic of the type of structure formed and reflect molecular motion within the lecithin molecule in each structure. In both systems the spin-lattice relaxation times increase along the alkyl chains towards the terminal methyl group, showing a corresponding increase in the chain molecular motion, although there are significant differences in the gradation of the changes.  相似文献   

7.
Good yields of some crystalline γ-alkyl esters of L -glutamic acid were obtained by carrying out the esterfication with a small (20–50 mole-%) excess of alcohol in aqueous hydrochloric acid or 60–80% sulfuric acid followed by neutralization with an alkaline solution. This new method made it possible to synthesize various γ-alkyl L -glutamates, including those higher than ethyl, and consequently, various poly(γ-alkyl L -glutamates) such as methyl, ethyl, n-propyl, n-butyl, isobutyl, and isoamyl. The conformation of these poly-L -glutamates in the solid state was determined by the infrared absorption method. The molecular motions of the polymers of γ-methyl, -ethyl, -n-propyl, -n-butyl, and-isoamyl L -glutamates and poly(γ-methyl-D -glutamate) in the solid state were studied by NMR, and dielectric and mechanical measurements. At temperatures up to 400°K., the NMR spectra of poly(γ-methyl D -glutamate) can be explained only by rotational motion of the side chain. Also, from NMR results, rotational motion of C?O groups in the side chain of poly(γ-methyl D -glutamate) is expected near room temperature, and such a motion was examined by dielectric measurements. Rotation of C?O groups in the side chains of polymers of γ-methyl, γ-ethyl, γ-n-propyl, γ-n-butyl, and γ-isoamyl L -glutamate was also observed near room temperature by dielectric measurements in the frequency range from 102 to 106 cps. Activation energies obtained by dielectric and mechanical measurements were similar to those for the side chain motions of the corresponding esters of poly(methacrylic acid). Although it has been noted that the molecular motion of poly(γ-benzyl L -glutamate) in the solid state at room temperature may be related to the motion of its back bone, the molecular motion in these poly-L -glutamates at these temperatures can be explained only in terms of side-chain rotation.  相似文献   

8.
Solid state 2H NMR has been used to study molecular motion in deuterated ammonia trimethylalane (CH3)3AlND3. From analysis of the 2H NMR lineshape between 123 and 298 K, reorientation of the -ND3 group about the molecular Al-N axis is shown to occur at a rate higher than 108 s-1, and simulation of partially relaxed 2H NMR lineshapes shows that the reorientation can be described as a 3-site 120° jump motion. From the temperature dependence of the 2H spin-lattice relaxation time, the activation energy for this motion is estimated to be 9.3±0.3 kJ mol-1. There is no evidence from either 2H or 27Al NMR data for any site-exchange between the sites occupied by the -ND3 and -CH3 groups. The anisotropy of the dynamics of (CH3)3AlND3 indicates that the orientation of the Al-N bond is highly constrained, presumably by a strong interaction between the electric dipoles of neighboring molecules.  相似文献   

9.
Motivated by the potential usefulness of polyethylene glycol (PEG)/Li+ salt mixtures in several industrial applications, we investigated the structure and dynamics of PEG/LiClO4 mixtures in D2O and its mixtures with CD3CN and DMSO-d6, in a series of PEG-based polymers with a wide variation in their molecular weights. 1H NMR chemical shifts, T1/T2 relaxation rates, pulsed-field gradient NMR diffusion experiments, and 2D HOESY NMR studies have been performed to understand the structural and dynamical aspects of these mixtures. Increasing the temperature of the medium results in a significant perturbation in the H-bonded structure of PEG in its PEG/LiClO4/D2O mixtures as observed from the increase in chemical shifts. On the other hand, the addition of molecular cosolvents has a negligible effect. The hydrodynamic structure of PEG shows a pronounced variation at low temperature with increasing molecular weight, which, however, disappears at higher temperatures. Increasing the temperature leads to a decrease in the hydrodynamic structure of PEG, which can be explained on the basis of solvation–desolvation phenomena. The 2D HOESY NMR spectra reveal a new finding of Li+-water binding in the PEG/LiClO4/D2O mixtures with the addition of molecular solvents, suggesting that the Li+ cation diffuses freely in the D2O mixtures of polymers as compared with the polymer mixtures with DMSO or CD3CN.  相似文献   

10.
Spin-lattice 1H and 13C nuclear magnetic relaxation (NMR) times T1 have been measured for solutions of polystyrene in hexachlorobutadiene at two different frequencies. Some nuclear Overhauser enhancements and linewidths have also been determined. At 15 and 25 MHz the relaxation times T1 of the ortho and meta carbons show two different dependences on temperature. These measurements indicate internal motion of phenyl groups around the Cα—Cpara axis. A single isotropic correlation time is inadequate to explain the relaxation data for the para carbon. Use of a diamond-lattice motional model reveals that segmental reorientation of the chain backbone of polystyrene can be described in terms of two correlation times, ρ characterizing the three-bond motion process, and θ reflecting either isotropic motions of subchains or departure from an ideal lattice. Data on low-molecular-weight polystyrene indicate the participation of overall rotatory diffusion in the relaxation process. This motion is no longer efficient in high-molecular-weight polymers, where relaxation is due to segmental reorientation.  相似文献   

11.
Two derivatives, 3 L and 9 L , of a ditopic, multiply hydrogen‐bonding molecule, known for more than a decade, have been found, in the solid state as well as in solvents of low polarity at room temperature, to exist not as monomers, but to undergo a remarkable self‐assembly into a complex supramolecular species. The solid‐state molecular structure of 3 L , determined by single‐crystal X‐ray crystallography, revealed that it forms a highly organized hexameric entity 3 L 6 with a capsular shape, resulting from the interlocking of two sets of three monomolecular components, linked through hydrogen‐bonding interactions. The complicated 1H NMR spectra observed in o‐dichlorobenzene (o‐DCB) for 3 L and 9 L are consistent with the presence of a hexamer of D3 symmetry in both cases. DOSY measurements confirm the hexameric constitution in solution. In contrast, in a hydrogen‐bond‐disrupting solvent, such as DMSO, the 1H NMR spectra are very simple and consistent with the presence of isolated monomers only. Extensive temperature‐dependent 1H NMR studies in o‐DCB showed that the L 6 species dissociated progressively into the monomeric unit on increasing th temperature, up to complete dissociation at about 90 °C. The coexistence of the hexamer and the monomer indicated that exchange was slow on the NMR timescale. Remarkably, no species other than hexamer and monomer were detected in the equilibrating mixtures. The relative amounts of each entity showed a reversible sigmoidal variation with temperature, indicating that the assembly proceeded with positive cooperativity. A full thermodynamic analysis has been applied to the data.  相似文献   

12.
A new series of non-disc-like oxovanadium(iv) Schiff base complexes of the type [VO((4-C n H2n+1O)2salcn)], where n?=?14, 16 or 18 and salcn is N,N -bis-salicylidene-1,2-cyclohexadiamine, containing 4-substituted alkoxy tails in the side aromatic rings, have been synthesised and their mesogenic properties investigated. The compounds were characterised by FT–IR, 1H NMR, 13C NMR, UV–Vis and FAB mass spectrometry. The mesomorphic behaviour of the compounds was studied using polarised optical microscopy and differential scanning calorimetry. The molecular organisation in the mesophase was determined by X-ray diffraction. It was found that the ligands did not show mesogenic behaviour, but their complexes exhibited a thermally stable enantiotropic highly ordered three-dimensional plastic mesophase with a columnar structure in the extended temperature range 155–166°C. The clearing temperature of the complexes was found to be lower than in the structurally analogous copper complexes. A density functional theory study was carried out using DMol3 at BLYP/DNP level to obtain a stable optimised structure. A square pyramidal geometry for the vanadyl complexes has been proposed.  相似文献   

13.
Two series of novel crosslinked siloxane‐based polymers and their complexes with lithium perchlorate (LiClO4) were prepared and characterized by Fourier transform infrared spectroscopy, solid‐state NMR (13C, 29Si, and 7Li nuclei), and differential scanning calorimetry. Their thermal stability and ionic conductivity of these complexes were also investigated by thermogravimetric and AC impedance measurements. In these polymer networks, poly(propylene oxide) chains with different molecular weights were introduced through self‐synthesized epoxy‐siloxane precursors cured with two curing agents. The glass‐transition temperature (Tg) of these copolymers is dependent on the length of the ether units. The dissolution of LiClO4 considerably increases the Tg of the polyether segments. The dependence of the ionic conductivity was investigated as a function of temperature, LiClO4 concentration, and the molecular weight of the polyether segments. The ion‐transport behavior was affected by the combination of the ionic mobility and number of carrier ions. The 7Li solid‐state NMR line shapes of these polymer complexes suggest a significant interaction between Li+ ions and the polymer matrix, and temperature‐ and LiClO4 concentration‐dependent chemical shifts are correlated with ionic conductivity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1226–1235, 2002  相似文献   

14.
Adhesively bonded joints using epoxy are widely used in aircraft and aerospace structures. Quality control and defect detection during epoxy curing in such applications is critical. We used single-sided nuclear magnetic resonance (NMR) to nondestructively probe and spatially resolve the change in the characteristic NMR relaxation time (T2) of epoxies during curing on a substrate. Time-dependent T2 values were fit to a Weibull function to model temporal changes in the NMR measurables. Our results demonstrate that the reduction in molecular mobility of various epoxy/curing agent mixtures occurs more rapidly at the interface than in the bulk. Further use of single-sided NMR to acquire spatially resolved T2 data will provide a route for elucidatory epoxy curing studies. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 616–623  相似文献   

15.
The reaction enthalpy and reaction heat capacity of three aromatic epoxy–amine systems have been determined with modulated temperature diffential scanning calorimetry (MTDSC), mostly in quasi‐isothermal conditions, over a wide temperature range (33–140 °C) and for different mixture compositions. The reaction enthalpy is only slightly dependent on the epoxy–amine chemistry, from ?111 to ?98 kJ/mol epoxy functionality. With the model system phenyl glycidyl ether (PGE)+aniline, the reaction enthalpy of the secondary amine–epoxy reaction step is equal to that of the primary amine–epoxy reaction. Group contributions needed to calculate the reaction heat capacity with an additivity approach are evaluated, and a new value of 37.2 J mol?1 K?1 for the group N? (H)(C)(CB) is proposed. With this group contribution, the additivity method predicts almost equal values for the reaction heat capacity of both amine–epoxy reaction steps at 298.15 K (ΔrCp,prim = 15.7 J mol?1 K?1 and ΔrCp,sec = 14.6 J mol?1 K?1), whereas the experimental value of ΔrCp,sec is about three times larger than that of ΔrCp,prim at 100 °C. These results are confirmed experimentally for PGE+aniline as a different temperature dependence of both reaction heat capacities. MTDSC therefore is potentially interesting for differentiating between reactive species in an epoxy–amine reaction, a benefit previously assigned to spectroscopic methods only. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 594–608, 2003  相似文献   

16.
A typical low‐strain monomer, cyclooctene, was polymerized via ring‐opening metathesis polymerization with electrochemically produced active species. The structural properties of the polyoctenamer were determined by NMR, gel‐permeation chromatography and differential scanning calorimetry. Analysis of the polyoctenamer microstructure by 1H and 13C NMR spectroscopy indicates that the polymer contains a highly cis stereoconfiguration of the double bonds (σc = 0.75). The resulting polymer is of low molecular weight and has a reasonably broad molecular weight distribution (Mw = 18 000, PDI = 1.9). The glass transition temperature and melting point of the polyoctenamer are ?11.3 °C and 36.5 °C respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In an attempt to prepare a polymeric solid electrolyte with both high ionic conductivity at ambient temperature and adequate mechanical strength, an ionic conducting IPN composed of bisphenol A epoxy resin/polyethylene glycol containing LiClO_4 was synthesized. The dependence of conductivity was investigated as a function of salt content, composition and temperature. It has been revealed that a maximum of conductivity appeared when EO/Li=25, where EO denotes the—(CH_2CH_2O)-unit in polyethylene glycol, and that the temperature dependence of conductivity followed VTF equation, suggesting that the motion of ionic carriers resulted from the segmental motion of the polymer. When glycerol epoxy resin was used instead of bisphenol A epoxy, the ambient temperature (25℃) conductivity could somewhat further be raised up to 3×10~(-5) S/cm.  相似文献   

18.
The effects of electron irradiation on the molecular chemical structure, conformation, mobility, and phase transition of vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer have been investigated with variable‐temperature, solid‐state 19F nuclear magnetic resonance (NMR). It has been found that electron irradiation converts all‐trans conformations of both VDF‐rich and TrFE‐containing segments into dynamically mixed trans–gauche conformations accompanied by a simultaneous ferroelectric‐to‐paraelectric (or amorphous) transition. The variable‐temperature 19F magic‐angle‐spinning spectra results show that the paraelectric phase melts at much lower temperatures in irradiated films than in an unirradiated sample. Moreover, 19F NMR relaxation data (spin–lattice relaxation times in both the laboratory and rotating frames) reveal that electron irradiation enhances the molecular motion in paraelectric regions, whereas the molecular motion in a high‐temperature amorphous melt (>100 °C) is more constrained in irradiated films. Besides these physical changes, electron irradiation also induces the formation of several CF3 groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1714–1724, 2006  相似文献   

19.
Method of quantitative analysis through latex‐state 13C NMR spectroscopy was established for in situ determination of epoxy group content of epoxidized natural rubber in latex stage. The epoxidized natural rubber latex was prepared by epoxidation of deproteinized natural rubber with freshly prepared peracetic acid in latex stage. The resulting epoxidized deproteinized natural rubber (EDPNR) latex was characterized through latex‐state 13C NMR spectroscopy. Chemical shift values of signals of latex‐state 13C NMR spectrum for EDPNR were similar to those of solution‐state 13C NMR spectrum for EDPNR. Resolution of latex‐state 13C NMR spectrum was gradually improved as temperature for the nuclear magnetic resonance (NMR) measurement increased to 70°C. Signal‐to‐noise ratio of latex‐state 13C NMR measurement was similar to that of solution‐state 13C NMR measurement at temperature above 50°C. The epoxy group content determined through latex‐state NMR spectroscopy was proved to be the same as that determined through solution‐state NMR spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The Carr-Purcell experiment first used by Allerhand and Gutowsky for the determination of chemical exchange rates has been applied to the study of an enzyme inhibitor complex. Chemical shift and relaxation time data obtained by analysis of pulsed fluorine NMR data collected at 51 MHz are shown to be consistent with high resolution results assembled at 94° 1 MHz. The rate constants for dissociation of the N-trifluoroacetyl-D -tryptophan-α-chymotrypsin complex were determined to be 1 × 104 s?1 at 26°C and 2 × 103 s?1 at 6·5°C. The resonance position of the fluorine nuclei of the inhibitor is shifted downfield ~1 ppm upon complexation to the enzyme, and the trifluoromethyl group suffers some restriction of molecular motion in the bound state as indicated by T1 and T2 data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号