首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The scan modes that can be used to obtain daughter ion, parent ion, and constant neutral-loss spectra on hybrid mass spectrometers are derived for instruments with a quadrupole combined with a magnetic and/or electric sector. All combinations of sector/quadrupole and quadrupole/sector instruments are discussed. The advantages or lack thereof of the various scans are presented with respect to operation, resolution and potential artifacts.  相似文献   

2.
Interfering molecular species are of major concern to the analyst currently using quadrupole based ICP-MS instrumentation. The recognized advantage and convenience offered by atmospheric plasma ionisation to multielement trace analysis can be significantly deteriorated by the limited resolving power of these analyzers. The result is poor sensitivity and lack of selectivity. With respect to sensitivity and resolution significant enhancement can be achieved by using magnetic sector based high resolution analyzers instead of quadrupoles. Unfortunately, up to now, commercially available HR-ICP-MS systems have been derived from complex instruments originally designed to meet the requirements of organic mass applications. Consequently, operation and performance of those systems expose the compromise which had to be made between an atmospheric plasma atomic ion source at high potential and an analyzer technology dedicated to molecular mass spectroscopy of organic compounds. At Finnigan MAT the first purpose designed high resolution ICP-MS has now been developed, which can be operated in high and low resolution mode at enhanced sensitivity. An innovative electric and magnetic field scanning strategy (SynchroScan) results in high on-peak duty cycles. Improved magnet technology offers high speed quadrupole style survey scans covering the full elemental mass range at nominal mass resolution. By extremely rapid peak switching, for example, all barium isotopes can be monitored in less than 100 ms with more than 90% on-peak detection efficiency. Examples are shown for computer controlled high and low resolution scan modes demonstrating the analytical performance of the new instrument concept. A comparison of detection limits achieved in low and high resolution mode is given.  相似文献   

3.
    
Interfering molecular species are of major concern to the analyst currently using quadrupole based ICP-MS instrumentation. The recognized advantage and convenience offered by atmospheric plasma ionisation to multielement trace analysis can be significantly deteriorated by the limited resolving power of these analyzers. The result is poor sensitivity and lack of selectivity. With respect to sensitivity and resolution significant enhancement can be achieved by using magnetic sector based high resolution analyzers instead of quadrupoles. Unfortunately, up to now, commercially available HR-ICP-MS systems have been derived from complex instruments originally designed to meet the requirements of organic mass applications. Consequently, operation and performance of those systems expose the compromise which had to be made between an atmospheric plasma atomic ion source at high potential and an analyzer technology dedicated to molecular mass spectroscopy of organic compounds. At Finnigan MAT the first purpose designed high resolution ICP-MS has now been developed, which can be operated in high and low resolution mode at enhanced sensitivity. An innovative electric and magnetic field scanning strategy (SynchroScan) results in high on-peak duty cycles. Improved magnet technology offers high speed quadrupole style survey scans covering the full elemental mass range at nominal mass resolution. By extremely rapid peak switching, for example, all barium isotopes can be monitored in less than 100 ms with more than 90% on-peak detection efficiency. Examples are shown for computer controlled high and low resolution scan modes demonstrating the analytical performance of the new instrument concept. A comparison of detection limits achieved in low and high resolution mode is given.  相似文献   

4.
A RF-only quadrupole collision cell of new design has been evaluated for use in tandem mass spectrometry experiments as a component of a triple quadrupole mass spectrometer. The new design permits operation at values of collision gas thickness higher by 1 order of magnitude than those used in most cells of this type. When operated at sufficiently high collision gas pressures, the transmission efficiency for precursor ions increases with increasing pressure, often to values greater than those observed in the absence of collision gas. Simultaneously, the attainable resolving power for fragment ions across the entire mass-to-charge ratio range, even for multiply charged precursors, also increases to the point where isomers of a quadruply charged fragment are resolved. The performance of the cell, judged in terms of yields and resolution of fragment ions, has been investigated as a function of the nature and pressure of collision gas, the kinetic energy of the precursor ions that enter the cell, and of the size and charge state of the precursors. The enhanced performance is explicable in terms of a marked deceleration of all ions that emerge from the cell to very low energies, probably a few tens of millielectronvolts, so that the cell effectively acts as an ion source for the second mass filter (fragment ion analyzer) to provide a spectrum of ions of fixed axial energy. The high transmission efficiency appears to arise from a collisional focusing effect analogous to that exploited in three-dimensional RF ion traps. The low axial energies imply that ion transit times through the cell are sufficiently long (several milliseconds) that, in precursor ion experiments where the first mass filter is scanned, a hysteresis effect is observed. This implies that in this operating mode compromises must be sought between scan speed and quality of peak shape. Examples are given of spectra obtained under realistic operating conditions that employ flow injection of samples.  相似文献   

5.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   

6.
The effect on triple-quadrupole performance of applying an axial field, in an rf-only quadrupole collision cell operated at pressures sufficiently high that collisional focusing is operating, has been investigated. The advantages of such cells have been shown previously to include increased transmission and much improved resolution in fragment ion spectra relative to the performance of collision cells operating at lower gas pressures. The disadvantages of high-pressure collision cells all derive from the relatively long transit times for the ions, which can be long relative to characteristic times for scanning the first mass filter (precursor ion selector) or for switching its setting in multiple reaction monitoring (MRM) cycles. The present work describes experiments on a high-pressure cell in which an axial field is created through use of conical rather than cylindrical or hyperbolic rods. In addition, results of computations of the electric fields within such a cell, and of ion trajectories through it, are presented. It is shown that application of axial fields of the order of 0. 1 V/cm can remove all hysteresis effects associated with the long ion transit times, and thus provide excellent performance in quantitation work using MRM, as well as in other scan modes. Furthermore, the advantages of collisional focusing in quadrupole collision cells are shown to be unimpaired by these low axial fields.  相似文献   

7.
The AutoSpec 6F mass spectrometer is a large, floor standing instrument comprising a pair of commercial EBE geometry (AutoSpec) mass spectrometers coupled in series to provide an hybrid EBE-EBE configuration, (E and B being respectively electrostatic and magnetic sectors.) It was designed in close collaboration between Professor R. Flammang and VG Analytical in Manchester, UK. It was equipped with five collision cells and allowed the recording of high energy CID (collision induced dissociation), MIKES (mass analyzed ion kinetic energy spectrometry) and NRMS (neutralization re-ionization mass spectrometry) data as well as consecutive MSn analyses. The field-free regions between sectors allowed the study of unimolecular decomposition products from long-lived metastable ions. The mass spectrometer became even more versatile when an RF-only quadrupole collision cell was installed between the second and the third electric sector. This allowed the study of associative ion/molecule reactions in the low kinetic energy regime. Bimolecular chemical reactions were performed inside the quadrupole cell when a neutral reagent was introduced and the reaction products were analyzed by high energy CID in the downstream sectors. This paper tells the history and summarizes the capabilities of this versatile instrument.  相似文献   

8.
Fomblin [poly(perfluoropropylene oxide)], PFK (perfluorokerosene) and FC-43 (perfluorotributylamine) are investigated as mass calibrants in electron-capture negative ionization mass spectrometry on a magnetic sector hybrod mass spectrometer. This work provides exact negative ion mass tables of these three calibrants obtained using high-resolution peak matching of representative ions of the calibrants against ions of known mass. The suitability of these calibrants for full data system control in the negative ionization mode is demonstrated for the techniques of high-resolution scanning, selected ion recording and calibration of the quadrupole sector of a hybrid instrument.  相似文献   

9.
A new tandem mass spectrometer of the quadrupole-acceleration lens-deceleration. lens-quadrupole (QADQ) configuration is described. The instrument is designed for neutralization-reionization studies and consists of a 2000-u quadrupole mass analyzer as MS-I, an acceleration electrostatic lens, a series of three differentially pumped collision cells, and an electrostatic deceleration lens, energy filter, and another 2000-u quadrupole mass analyzer as MS-II. The ion optical system achieves high total ion transmission for 5–9-keV ions. Unit mass resolution in neutralization-reionization mass spectra of aromatic compounds is demonstrated. Mass, kinetic energy, and linked scans at various levels of mass resolution and sensitivity are described.  相似文献   

10.
A triple-quadrupole instrument and a hybrid quadrupole/time-of-flight (TOF) mass spectrometer were compared for the determination of pharmaceutical compounds in water samples. The drugs investigated were the analgesics Ibuprofen, Fenoprofen, Ketoprofen, Naproxen, and Diclofenac. The recently introduced Q2-pulsing function, which enhances the transmission of fragment ions of a selected m/z window from the collision cell into the TOF analyzer, improved the sensitivity of product ion scans on the quadrupole/TOF instrument. The selectivity is much better on quadrupole/TOF systems than on triple quadrupoles because the high resolving power of the reflectron-TOF mass analyzer permits high-accuracy fragment ion selection. This minimizes interferences from environmental matrices and allows acquisition of full spectra for selected analytes with better signal-to-noise characteristics than comparable spectra obtained with a scanned quadrupole. The qualitative information obtained (mass accuracy, resolution and full-scan spectra) by hybrid quadrupole/TOF mass spectrometry allows a more certain identification of analytes in environmental matrices at trace levels. Sample enrichment of water samples was achieved by a solid-phase extraction procedure. Average recoveries for loading 1 L of samples varied from 88 to 110%, and the quantification limits were less than 1.2 ng/L for the triple-quadrupole instrument (in MRM mode) and less than 3 ng/L for the quadrupole/TOF instrument.  相似文献   

11.
A triple-sector instrument of reversed geometry, BEQQ, has been employed to resolve overlapping ion kinetic energy peaks arising from charge separation of metastable dications. Separation was achieved through mass resolution of the dication in the magnetic sector and of the singly charged product ion of greater mass in the quadrupole mass filter accompanied by energy resolution with the electric sector; the electric sector was scanned to cover the complete range of each charge separation peak. Two overlapping ion kinetic energy peaks arising from charge separation of the diphenylenimine dication and up to four overlapping ion kinetic peaks arising from charge separations of dications arising from benzene-1,3,5-d3 have been resolved. The kinetic energy releases have been calculated in each case. Enhanced z-discrimination is observed with the final stage of mass analysis.  相似文献   

12.
A new hybrid electrospray quadrupole Fourier transform mass spectrometry (FTMS) instrument design is shown and characterized. This instrument involves coupling an electrospray source and mass-resolving quadrupole, ion accumulation, and collision cell linear ion trap system developed by MDS Sciex with a home-built ion guide and ion cyclotron resonance (ICR) cell. The iterative progression of this design is shown. The final design involves a set of hexapole ion guides to transfer the ions from the accumulation/collision trap through the magnetic field gradient and into the cell. These hexapole ion guides are separated by a thin gate valve and two conduction limits to maintain the required <10(-9) mbar vacuum for FTICR. Low-attomole detection limits for a pure peptide are shown, 220 000 resolving power in broadband mode and 820 000 resolving power in narrow-band mode are demonstrated, and mass accuracy in the <2 ppm range is routinely available provided the signal is abundant, cleanly resolved, and internally calibrated. This instrument design provides high experimental flexibility, allowing Q2 CAD, SORI-CAD, IRMPD, and ECD experiments with selected ion accumulation as well as experiments such as nozzle skimmer dissociation. Initial top-down mass spectrometry experiments on a protein is shown using ECD.  相似文献   

13.
Increased efforts are being made to develop miniature mass spectrometers, including those which are hand-portable, and to retain the performance characteristics of traditional laboratory instruments as much as possible in the miniature instruments. This review of miniature mass analyzers emphasizes analytical performance and compares the relative merits of each type of miniature mass analyzer. Miniature instruments discussed include sector, Wien filter, time-of-flight, linear quadrupole, quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometers, as well as combinations of and variations on these major types. Special considerations that apply to small mass analyzers are noted and suggestions are made regarding the possible future development of this field. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

14.
A liquid chromatographic mass spectrometric strategy for systematic toxicological analysis (STA) is presented using the automatic 'on-the-fly' single mass spectrometry mode to tandem mass spectrometry mode (MS to MS/MS) switching abilities of a quadrupole time-of-flight (Q-TOF) instrument. During the chromatographic run, the quadrupole is initially set to transmit all masses until (an) ion(s) reaches a certain set threshold. Thereupon, the quadrupole automatically switches to the MS/MS mode, selecting the ion(s), which are subsequently fragmented in the high-efficiency hexapole collision cell, thus generating product ions that are further mass analyzed by the TOF. By limiting the TOF spectral accumulation time in the MS/MS mode to a statistically acceptable minimum, the quadrupole almost instantly switches back to the MS mode. Qualitative information, comprising the complementary MS ([M + H](+) ion mass) and MS/MS (informative product ion profile) data, as well as quantitative information obtained by integration of the MS extracted ion chromatogram(s), can be obtained in one single acquisition. Optimization of the automatic switching parameters, such as threshold, TOF spectral accumulation time, detection window and collision energy, was carried out by injection of a mix of 17 common drugs which were not necessarily baseline separated in the chromatographic system used. Indeed, the complete separation of the drugs is not deemed necessary since up to 8 different ions can 'simultaneously' be selected for MS/MS if they reach the preset criteria. In addition, the quantitative performance of the method was defined. In a second phase, the developed method was field-tested. To that end, the resulting data from extracts of urine samples were compared with and found to be in close concordance with those obtained by a standard toxicological analysis. This innovative approach clearly holds the potential for a substantial advance in the introduction of LC/MS in STA.  相似文献   

15.
A new type of mass analyzer is described, which allows lowresolution axial ion ejection to be obtained from a traveling wave based, stacked ring collision cell. Linking this ejection temporally with the scanning of the second quadrupole of a tandem quadrupole mass spectrometer provides an improvement in sampling duty cycle, which results in significant signal intensity improvements for scanning acquisitions such as product ion spectra. A near 100% storage efficiency is enabled by a split cell design, which allows ion fragmentation and accumulation to be performed in one section of the collision cell whilst previously accumulated ions are simultaneously ejected from the rear of the cell. These characteristics combine to give an m/z-dependent signal gain of 7–20X over a conventional scanning quadrupole for a 1000 Th scan. The ability to swap very rapidly from a non-enhanced mode of operation to an enhanced mode whilst retaining the existing sensitivity, speed, and functionality of a conventional tandem quadrupole mass spectrometer is also described.  相似文献   

16.
Electrospray ionization with a forward-geometry magnetic sector mass spectrometer was used for collisionally activated dissociation studies of multiply charged polypeptides and for studying non-covalently bound protein systems. The high-resolution capabilities of a high-performance instrument allow the resolution of isotopic contributions for product ions and molecular ion species. Determination of product ion charge states by this method reduces difficulties in the interpretation of product ion mass spectra from multiply charged precursors, which are generated either in the atmospheric pressure/vacuum electrospray interface or in the collision chamber of the mass spectrometer. Extended tandem mass spectrometric experiments have the potential for sequencing larger polypeptides. However, evidence for isomerization of gas-phase product ions from substance P and substance P analogues was observed, complicating the interpretation of product ion spectra. Non-covalent complexes can also be studied by electrospray ionization magnetic sector MS. The higher m/z range of such an instrument is a major advantage for studying weakly bound systems, such as heme–protein systems (myoglobin, hemoglobin) and protein aggregates (concanavalin A), because of their tendency to form complex ions with relatively low charge states.  相似文献   

17.
During the past decade, inductively coupled plasma mass spectrometry (ICPMS) has evolved from a delicate research tool, intended for the well-trained scientist only, into a more robust and well-established analytical technique for trace and ultra-trace element determination, with a few thousand of instruments used worldwide. Despite this immense success, it should be realized that in its ’standard configuration’– i.e. equipped with a pneumatic nebulizer for sample introduction and with a quadrupole filter – ICPMS also shows a number of important limitations and disadvantages: (i) the occurrence of spectral interferences may hamper accurate trace element determination, (ii) solid samples have to be taken into solution prior to analysis and (iii) no information on the ‘chemical form’ in which an element appears can be obtained. Self-evidently, efforts have been and still are made to overcome the aforementioned limitations to the largest possible extent. The application of a double focusing sector field mass spectrometer in ICPMS instrumentation offers a higher mass resolution, such that spectral overlap can be avoided to an important extent. Additionally, in a sector field instrument, photons are efficiently eliminated from the ion beam, resulting in very low background intensities, making it also very well-suited for extreme trace analysis. Also the combination of the ICP as an ion source and a quadrupole filter operated in a so-called ‘alternate’ stability region, an ion trap or a Fourier transform ion cyclotron resonance mass spectrometer allows high(er) mass resolution to be obtained. With modern quadrupole-based instruments, important types of spectral interferences can be avoided by working under ‘cool plasma’ conditions or by applying a collision cell. The use of electrothermal vaporization (ETV) or especially laser ablation (LA) for sample introduction permits direct analysis of solid samples with sufficient accuracy for many purposes. The application range of LA-ICPMS has become very wide and the introduction of UV lasers has led to an improved spatial resolution. Solid sampling ETV-ICPMS on the other hand can be used for some specific applications only, but accurate calibration is more straightforward than with LA-ICPMS. Limited multi-element capabilities, resulting from the transient signals observed with ETV or single shot LA, can be avoided by the use of a time-of-flight (TOF) ICPMS instrument. Finally, when combined with a powerful chromatographic separation technique, an ICP-mass spectrometer can be used as a highly sensitive, element-specific multi-element detector in elemental speciation studies. Especially liquid (HPLC-ICPMS) and – to a lesser extent – gas (GC-ICPMS) chromatography have already been widely used in combination with ICPMS. In speciation work, sample preparation is often observed to be troublesome and this aspect is presently receiving considerable attention. For GC-ICPMS, new sample pretreatment approaches, such as headspace solid phase microextraction (headspace SPME) and the purge-and-trap technique have been introduced. Also supercritical fluid chromatography (SFC) and capillary electrophoresis (CE) show potential to be of use in combination with ICPMS, but so far the application ranges of SFC-ICPMS and CE-ICPMS are rather limited. It is the aim of the present paper to concisely discuss the aforementioned recent ’trends’ in ICPMS, using selected real-life applications reported in the literature.  相似文献   

18.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

19.
Glycoconjugates, such as chromophore-labeled disaccharides and permethylated glycosphingolipids (GSL) were used for comparison of triple quadrupole and double focusing mass spectrometers in analysis of product ions. A profound effect of collision energy was observed in the product ion spectra of ceramide ions (fragment ions of permethylated GSL): more product ions were observed from a double focusing mass spectrometer. Besides collision energy, the structure of the analyte had a significant effect on the formation of product ions. Despite the fact that masses of protonated molecular ions (MH+) of permethylated GSL are significantly larger than their ceramide fragments, the low-energy and high-energy product ion spectra of MH+ are, in general, similar. In a double focusing mass spectrometer of reversed geometry, more metastable ions were observed in the first field free region (FFR) than in the second FFR. The metastable ions observed in the second FFR were similar to those observed in low-energy collision-induced dissociation (CID). Although a double focusing mass spectrometer is superior to triple quadrupole instrument for detection of product ions, the poor resolution in either the selection of precursor ion or in the product ion spectra can be a serious problem in analysis of a mixture with similar masses.  相似文献   

20.
Charge exchange reactions within a triple quadrupole mass spectrometer characterize doubly charged ions formed in the ion source. Two methods have been developed for identifying the singly charged ions formed from doubly charged ions by charge exchange in the collision quadrupole. The first is based on the characteristically high kinetic energy-to-charge ratios of the products of charge exchange; this property can be used to separate these ions from all other singly charged ions. This retarding potential method is analogous to procedures for recording doubly charged ion mass spectra using sector instruments. The second method is based on the fact that, although mass remains constant in the charge exchange reaction, the change in mass-to-charge ratio can be followed. A charge exchange linked scan, predicated on changes in charge rather than mass, but otherwise analogous to neutral loss/gain scans, is described. Information on the structure of doubly charged ions can be obtained by recording the fragmentation products of dissociative charge exchange. The utility of the charge exchange linked scan for the selective identification of polynuclear aromatic compounds in a complex mixture is described. The methods given can be generalized to cover other charge permutation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号