首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
1H NMR spectroscopy was used to investigate the stoichiometry and stability of the drug ketamine cation complexes with some crown ethers, such as 15-crown-5 (15C5), aza-15-crown-5 (A15C5), 18-crown-6 (18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6), dibenzyl-diaza-18-crown-6 (DBzDA18C6) and cryptant [2,2,2] (C222) in acetonitrile (AN), dimethylsulfoxide (DMSO) and methanol (MeOH) at 27 degrees C. In order to evaluate the formation constants of the ketamine cation complexes, the CH3 protons chemical shift (on the nitrogen atom of ketamine) was measured as function of ligand/ketamine mole ratio. The formation constant of resulting complexes were calculated by the computer fitting of chemical shift versus mole ratio data to appropriate equations. A significant chemical shift variation was not observed for 15C5 and 18C6. The stoichiometry of the mono aza and diaza ligands are 1:1 and 1:2 (ligand/ketamine), respectively. In all of the solvents studied, DA18C6 formed more stable complexes than other ligands. The solvent effect on the stability of these complexes is discussed.  相似文献   

2.
Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed.  相似文献   

3.
23Na NMR measurements were employed to monitor the stability of Na+ ion complexes with 18-crown-6 (18C6), dicycloxyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6), 15-crown-5 (15C5) and benzo-15-crown-5 (B15C5) in binary acetonitrile–dimethylformamide mixtures of varying composition. In all cases, the variation of 23Na chemical shift with [crown]/[Na+] mole ratios indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation which relates the observed chemical shifts to the formation constants. It was found that, in pure acetonitrile, the stabilities of the resulting 1:1 complexes vary in the order 15C5>DC18C6>B15C5>18C6>DB18C6, while in pure dimethylformamide the stability order is DC18C6>18C6>15C5>B15C5>DB18C6. The observed changes in the stability order could be related to the specific interactions between some crown ethers and acetonitrile. It was found that, in the case of all complexes, an increase in the percentage of dimethylformamide in the solvent mixtures would significantly decrease the stability of the complexes.  相似文献   

4.
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.  相似文献   

5.
Rouhollahi A  Shamsipur M  Amini MK 《Talanta》1994,41(9):1465-1469
The complex formation of Hg(2+) with some macrocyclic crown ethers in nitrobenzene, acetonitrile and dimethylformamide solutions was studied by differential pulse polarography at 25 degrees C. The stoichiometry and stability of the complexes were determined by monitoring the shift in the Hg(2+) differential pulse peak potential against the ligand concentration. The stability of the resulting 1:1 complexes vary in the order dicyclohexyl-18-crown-6 > 18-crown-6 > 15-crown-5 > dibenzo-18-crown-6 > dibenzo-24-crown-8 > benzo-15-crown-5 > 12-crown-4. There is an inverse relationship between the complex stability and the Gutmann donor number of solvents.  相似文献   

6.
The complexation reactions between the macrocyclic polyethers dibenzo-18-crown-6, benzo-18-crown-6, benzo-15-crown-5 and polyethers bearing a stilbene unit with alkali metal and silver cations have been studied conductometrically in nitromethane. The formation constants of 1 : 1 and 1 : 2 (metal : ligand) complexes were determined and found to decrease with increasing cation diameter. The stability of the stilbene crown – metal cation complexes is lower than for complexes of other investigated crown ethers with analogous cations. There seem to be some effects of double bond-silver ion interactions.  相似文献   

7.
[7Li] NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 18-crown-6 and dicyclohexyl-18-crown-6 in nitromethane and acetonitrile solutions. A competitive [7Li] NMR technique was also employed to probe the complexation of Ba2+, Pb2+, Cd2+, and UO22+ ions with the same crown ethers–solvent systems. All the resulting 1 : 1 complexes were more stable in nitromethane than acetonitrile solution. In all cases, the stability of both crown complexes in nitromethane and acetonitrile varied in the order Pb2+ > Ba2+ > Li+ > Cd2+ > UO22+.  相似文献   

8.
The formation of molecular complexes with 1 : 1 stoichiometry between 2,4,6-trinitrophenol and aza-12-crown-4, aza-15-crown-5 and aza-18-crown-6 in chloroform solution was investigated spectrophotometrically. The resulting complexes were isolated and characterized by microchemical analysis, IR and NMR spectroscopy. The equilibrium constants of the 1 : 1 adducts were evaluated from the non-linear least-squares fitting of the absorbance-mole ratio data. The overall stability of the 2,4,6-trinitrophenol complexes was found to vary in the order aza-15-crown-5 > aza-18-crown-6 aza-12-crown-4. The kinetics of complex formation between 2,4,6-trinitrophenol and the aza-substituted crown ethers used were investigated and in all cases the results showed the occurrence of an oscillating chemical reaction in solution.  相似文献   

9.
《Polyhedron》1999,18(8-9):1273-1278
A series of anionic chromium(III) thiocyanato complexes with metal crown ether cations have been prepared and characterized. These complexes have the form [Crown-M]2+[Cr(NCS)5(H2O)]2− and [Crown-M]3+[Cr(NCS)6]3−, where M=Na+, K+, or NH4+ and crown represents the crown ether. The crown ethers are 15-crown-5, B-15-crown-5, 18-crown-6, DB-18-crown-6, and DB-24-crown-8, where B- and DB- stand for benzo- and dibenzo-, respectively. The complexes are stable for at least 20 h in the dark in dimethylformamide(DMF) or in acetonitrile, and they release thiocyanate slowly, k=(0.71–2.67)×10−9 mol/(L s) in acetonitrile in the dark. Photoanation of thiocyanate was observed for the complexes in DMF and in acetonitrile. The quantum yields of thiocyanate release in DMF and in acetonitrile are reported. The quantum yields were in the range 0.05 to 0.52 mol einstein−1 and were solvent and wavelength dependent. In general, larger quantum yields were observed in DMF than in acetonitrile. The photoreaction mechanism is discussed.  相似文献   

10.
A method for the synthesis of complexes of sodium and lithium borohydrides with crown ethers is proposed. The complexes of sodium borohydride with benzo-15-crown-5, 4′-aminobenzo-15-crown-5, dibenzo-18-crown-6, and diaza-18-crown-6 and the complexes of lithium borohydride with benzo-15-crown-5 and dibenzo-18-crown-6 are synthesized. These complexes can be used for the preparation of hydrogen in their reactions with methanol. The complex formation does not affect the purity of hydrogen formed.  相似文献   

11.
The complexation behavior of nicotinamide with macrocyclic polyethers viz, 15-crown-5, benzo-15-crown-5, 18-crown-6, dicyclohexano-18-crown-6, dibenzo-18-crown-6, dibenzo-24-crown-8, 1,4,7,10,13,16-hexathiacyclooctadecane, monoaza-15-crown-5, 1,4,10-trioxa-7,13-diaza-cyclopentadecane, 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane, 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, 1,4,7-tritosyl-1,4,7-triazacyclononane, 1,4,7,10-tetratosyl-1,4,7,10-tetraazacyclododecane and 1,4,8,11-tetraazacyclooctadecane has been studied in dimethylsulphoxide (DMSO) and 90% DMSO + water using differential pulse polarography and complexation constants have been reported. Nicotinamide forms stable complexes with six-membered coronand rings of the crown ethers. The nature of the atoms (oxygen, sulfur and nitrogen) in the coronand ring is observed to affect the stability of the complex. The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in peak potentials of the polarograms of nicotinamide against the ligand concentration. The Gibbs free energy change turns out to be negative at 25°C, which indicates the spontaneity of the binding of nicotinamide with crown ethers. The mole ratio of nicotinamide to the macrocyclic compound was also determined and it was found that the complexes were of 1:1 type with respect to crown ethers. The tendency of nicotinamide to form complexes with macrocycles is found to be greater in DMSO than in DMSO + water.  相似文献   

12.
The gas-phase structures of transition-metal dication (Zn(2+) and Cd(2+)) complexes with varying sized crown ethers, 12-crown-4 (12c4), 15-crown-5 (15c5), and 18-crown-6 (18c6), are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and quantum mechanical calculations. The measured spectra span the 750-1600 cm(-1) infrared range, utilizing light generated by a free electron laser, and are compared to predicted spectra calculated at the B3LYP/6-311+G(d,p) or B3LYP/Def2TZVP levels of theory. Spectra with the largest and most flexible crown ether, 18c6, indicate that the crown is highly distorted, wrapping in a tight cage-like structure around both dications studied. The 15c5 adopts a folded orientation for the Zn(2+) complex yet is almost planar when complexed with the larger Cd(2+) ion. The Zn(2+)(12c4) spectrum has bands appearing at lower frequencies than the other systems, consistent with an open conformation such that the metal is exposed, lying above the center of mass of the crown ether ring. The open structures of the Zn(2+)(12c4) and Cd(2+)(15c5) complexes have implications for solvent interactions in the condensed phase. The conformation of each metal-crown complex is highly dependent on metal size, charge, and crown ether flexibility, such that a delicate balance of minimizing the metal-oxygen bond lengths but maximizing the oxygen-oxygen distances arises. These competing influences are reflected in both the spectra and lowest-energy conformations.  相似文献   

13.
Formation of the charge transfer complexes between benzo-15-crown-5, dibenzo-18-crown-6, dibenzo-24-crown-8 and dibenzo-crown-10 and the π-acceptors DDQ and TCNE in dichloromethane solution was investigated spectrophotometrically. The molar absorptivities and formation constants of the resulting 1:1 molecular complexes were determined. The stabilities of the complexes of both π-acceptors vary in the order DB18C6 > DB3OC10 ⋍ DB24C8 > B15C5. All of the resulting complexes were isolated in crystalline form and characterized. The influences of potassium ion on the formation and stability of the TCNE molecular complexes were studied. Effects of the crown ether structure and the role of the K+ ion on the formation of charge transfer complexes are discussed.  相似文献   

14.
Liquid-liquid extractive-spectrophotometric studies of sodium ion complexes of 18-crown-6(18C6), dibenzo-18-crown-6(DB18C6), 15-crown-5(15C5), and 12-crown-4(12C4) and anionic dyes [4-(2-pyridylazo)-resorcinol monosodium salt monohydrate (PAR), Eriochrom Black T (EBT), and methyl orange (MOR)] and sodium picrate (PICRAT) as the counter ion are described. The overall extraction equilibrium constants for the 1 : 1 complexes of the above crown ethers with sodium dyes between different organic solvents and water have been determined at 25deg;C. They were conducted in various solvent-water systems maintaining an identical initial cation concentration in water, [M0+]w, and macrocyclic ligand concentration in the organic phase, [L0]org}, so that in all extractions [M0+]w : [L0]org ratios were 1 : 1, 1 : 10, 1 : 20, 1 : 50, and 1 : 62.5. An ion association complex formed between the sodium-crown ether complex ion and a dye anion was extracted into the organic solvent, and then the dye concentration of the separated aqueous phase was measured with an ultraviolet-visible spectrophotometer. PAR was the best associated dye with all crown ethers sodium-dyes and the extracted dye occurs as the ion-pair complex. Methylene chloride was found to be better than other extractive solvents used in this study.  相似文献   

15.
The novel 4'-(ammoniummethylene)benzo-18-crown-6 cation was synthesized as a hexafluorophosphate salt and found to exist as a cyclophane-like dimer in the solid state, gas phase and in acetonitrile solution.  相似文献   

16.
A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co(III) complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported. 2D NMR and molecular mechanics modeling have been used to examine conformational variations upon guest ion complexation. Addition of cations to these receptors results in an appreciable anodic shift in the Co(III/II) redox potential, even in aqueous solution, but little cation selectivity is observed. Evidence for complex formation has been corroborated by (23)Na and (7)Li NMR spectroscopy and electrospray mass spectrometry.  相似文献   

17.
Complexes of the anion of the secondary amine 2-phenylaminopyridine (LH) with the heavier alkali metals Na-Cs have been prepared in the presence of various macrocyclic polyether crowns [12-crown-4 (12C4), 15-crown-5 (15C5), and 18-crown-6 (18C6)], which coordinate to the metal ions in all cases. Depending on the combination of alkali metal and crown, the products include separated ion pairs [(crown)(2)M](+)L(-)(12C4/Na, 15C5/K, 15C5/Rb, 15C5/Cs) and contact-ion-pair neutral molecules [(crown)ML](15C5/Na, 18C6/Na, 18C6/K, 18C6/Rb) in which L(-) acts as a bidentate ligand. [((12C4)KL)(2)] is a dimer in which the amido and pyridine N atoms of two ligands bridge the metal ions, while [((18C6)KL(2)K)([infinity])] is a chain polymer with crown O and pyridyl N atoms acting as bridges in corner-sharing KOKN four-membered rings and may be regarded as a potassium potassate complex. [((18C6)Cs(2)L(2))([infinity])] is also polymeric, with a basic arrangement like that of [((12C4)KL)(2)], but with each 18C6 ligand mu-kappa6:kappa6 to two metal centres, generating the polymer. Although most of the [(crown)(2)M](+) sandwich cations have essentially parallel crown ligands, [(12C4)(2)Rb](+) is markedly bent, both in the complex incorporating THF as an additional ligand and in the THF-free complex, where two of these cations form a centrosymmetric dimer through two bridging oxygen atoms; DFT calculations indicate that the bending is inherent, thus enabling the coordination by an extra oxygen atom rather than being a consequence of this coordination. Attempts to isolate the caesium 12C4 derivative were unsuccessful. The compounds have been characterized by NMR spectroscopy, CHN microanalysis and, in most cases, X-ray crystallography.  相似文献   

18.
The complexation reactions between some rare earth metal cations (Ln; Y3+, La3+ and Ce3+) with 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6), benzo-18-crown-6 (B18C6) and decyl-18-crown-6 (Dec18C6), have been studied in methanol–acetonitrile (MeOH–AN) and methanol–water (MeOH–H2O) binary mixtures using a competitive spectrophotometric method. 2-(2-thiazolylazo)-4-methyl phenol (TAC or L) was used as colorimetric complexant. It was found that the selectivity order of TAC for Ln cations is highly changed with changing the composition of the mixed solvents. Moreover, as the concentration of acetonitrile increases in MeOH–AN binary mixture, the stability of Ln–TAC complexes increases and passes through a maximum at a certain mole fraction of acetonitrile. In addition, the stability of Ln–crown ether complexes increases with increasing the concentration of methanol in MeOH–H2O and acetonitrile in MeOH–AN binary solutions. A non linear behaviour was observed for variation of stability constants of all complexes versus the composition of the mixed solvents. The results show that 18C6 generally forms more stable complexes with La3+ and Ce3+ cations than DC18C6 in methanol and MeOH–H2O binary mixtures, while this sequence is reversed in the methanol-acetonitrile binary mixtures which are rich with respect to acetonitrile.  相似文献   

19.
Cadmium-113 nuclear magnetic resonance was used as a sensitive probe to study the interaction of Cd2+ ion with 15-crown-5 and benzo-15-crown-5 in acetonitrile and its binary mixtures with water and nitromethane. The observed 113Cd-NMR chemical shift changes at a constant Cd2+ ion concentration and varying crown concentrations were found to be consistent with a fast exchange model. The formation constants of the resulting 1:1 complexes were evaluated from computer fitting of the chemical shift-mole ration data to an equation which relates the observed chemical shifts to the formation constant. The geometries of the macrocyclic ligands and their cadmium complexes were optimized by an ab initio method, and the calculated binding energies of the resulting complexes were compared. Both the 113Cd-NMR and ab initio studies revealed that, in all cases, 15-crown-5 forms a more stable Cd2+ complex than benzo-15-crown-5. In the case of the both crown ethers, there is an inverse relationship between the stability of complexes and solvating ability of the solvent systems used.  相似文献   

20.
A novel series of benzo crown ether (dibenzo 18-crown-6 ether, benzo 18-crown-6 ether, and benzo 15-crown-5 ether) functionalized enamines derivatives from amino benzo crown ether (4-amino dibenzo 18-crown-6 ether, 4-amino benzo 18-crown-6 ether, 4-amino benzo 15-crown-5 ether) and substituted 3-(dimethylamino)-1-phenylprop-2-en-1-one compounds have been synthesized. All the synthesized compounds were characterized by infrared, 1H NMR, 13C NMR, distortionless enhancement polarization transfer, and mass and elemental analysis techniques. The cation recognition property for benzo crown ether enamine 8a was studied by absorption and fluorescence spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号