首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
于杰辉  施展等 《中国化学》2002,20(6):560-563
The title compound Cu2Cl2phen (phen = 1,10‐phenanthroline, C12H8N2) 1 was synthesized from CuCl2·2H2O, CuCl and phen by hydrothermal method and its structure was determined by single crystal X‐ray analysis. With phen, CuG forms one‐dimensional chains, which comprise two zigzag chains based on fused Cu‐X units and connected via covalent bonds. The compound contains two crystallographically unique monovalent copper ions, Cu(1) and Cu(2). The Cu(1) atom in the tetrahedral site, is coordinated to two bridging Cl? and two N atoms in phen. The Cu(2) atom with a slightly distorted triangular planar geometry, is coordinated to three Cl?. The compound 1 was crystallized in monoclinic, space group P21/n with a = 0.37338(4), b = 1.9510(2), c = 1.68008(19) nm, β = 95.605 (3)°, R = 0.0458, and was characterized by elemental analysis, IR spectrum and TGA analysis.  相似文献   

2.
This article describes the new economic decarboxylative trifluoromethylating reagent [Cu(phen)(O2CCF3)] ( 1 ; phen=1,10‐phenanthroline) and the efficient difluorocarbene precursor [Cu(phen)2][O2CCF2Cl] ( 2 ). Treatment of copper tert‐butoxide with phen and subsequent addition of trifluoroacetic acid or chlorodifluoroacetic acid afforded air‐stable complexes 1 and 2 , respectively, which were characterized by X‐ray crystallography. The copper(I) ion in 1 is coordinated by a bidentate phen ligand, a monodentate trifluoroacetate group, and a molecule of CH3CN in a distorted tetrahedral coordination geometry. The molecular structure of 2 adopts an ionic form that consists of a [Cu(phen)2]+ cation and a chlorodifluoroacetate anion. Complex 1 reacted with a variety of aryl and heteroaryl halides to form trifluoromethyl (hetero)arenes in good yields. The corresponding Hammett plot exhibited a linear relationship and a reaction parameter (ρ)=+0.56±0.02, which indicated that the trifluoromethylation reaction proceeded via a nucleophilic reactive species. Complex 2 reacts with phenols to produce aryl difluoromethyl ethers in modest‐to‐excellent yields. Mechanistic investigations revealed that the difluoromethylation reaction proceeds by initial copper‐mediated formation of difluorocarbene and subsequent concerted addition of difluorocarbene to the phenol to form a three‐center transition state.  相似文献   

3.
The title compound, [Cu{N(CN)2}(C12H8N2)2]BF4, was prepared as part of our study of the shape of coordination polyhedra in five‐coordinated copper(II) complexes. Single‐crystal X‐ray analysis reveals that the structure consists of [Cu{N(CN)2}(phen)2]+ cations (phen is 1,10‐phenanthroline) and BF4 anions. The Cu centre is five‐coordinated in a distorted trigonal bipyramidal manner by four N atoms of two phen ligands and one N atom of a dicyanamide anion, which is coordinated in the equatorial plane at a distance of 1.996 (2) Å. The two axial Cu—Nphen distances have similar values [average 1.994 (6) Å] and are shorter than the two equatorial Cu—Nphen bonds [average 2.09 (6) Å]. This work demonstrates the effect of ligand rigidity on the shape of coordination polyhedra in five‐coordinated copper(II) complexes.  相似文献   

4.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

5.
The title mononuclear [Cu(sq)(phen)2]·3H2O complex [sq is squarate (C4O4) and phen is 1,10‐phenanthroline (C12H8N2)] has been synthesized and the structure consists of a neutral mononuclear [Cu(sq)(phen)2] unit and three solvate water mol­ecules. The CuII ion has distorted square‐pyramidal coordination geometry, comprised of one carboxyl­ate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. An extensive three‐dimensional network of OW—H⋯O/OW hydrogen bonds, face‐to‐face π–­π interactions between the 1,10‐phenanthroline aromatic rings and a weak π–ring interaction are responsible for crystal stabilization.  相似文献   

6.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

7.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

8.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   

9.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

10.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

11.
Crystal Structures of the Terpyridine Complexes [Cd(terpy)Cl2], [Cu(terpy)(CN)Cl], and [Cu(terpy)][Cu(CN)3] · H2O By reaction of cadmium chloride with 2,2′ : 6′,2″-terpyridine (“terpy”) in water/acetone crystals of [Cd(terpy)Cl2] ( 1) were formed. The compound crystallizes monoclinic, space group P21/c, a = 1111.70(10), b = 823.10(7), c = 1643.00(14) pm, β = 93.913(1)°, Z = 4. Starting from mixtures of different molar ratios of copper(II) chloride, terpyridine, and KCN in water/methanole, two complexes of different composition were obtained. At the molar ratio of 1 : 1 : 2 a copper(II) coordination compound with both halide and pseudohalide ligands, [Cu(terpy)(CN)Cl] ( 2 ), was formed which also crystallizes monoclinic, P21/c, a = 1065.6(3), b = 824.6(2), c = 1644.5(7) pm, β = 98.214(3)°, Z = 4. At a molar ratio of 1 : 1 : 10 a partial reduction of copper(II) occured with formation of a mixed valency compound [Cu(terpy)][Cu(CN)3] · H2O ( 3 ) which crystallizes in the hexagonal space group P6522, with a = b = 800.29(1), c = 4771.05(7) pm, Z = 6. Compounds 1 and 2 are structurally similar, the coordination of the metal atoms is square pyramidal. Networks are formed by hydrogen bridges. In 3 the copper(II) ions show a distorted square planar coordination by the three N atoms of the terpy ligand and one N atom of a bridging CN group, the copper(I) atoms, however, show trigonal planar coordination by three CN ligands to which the water molecules are bonded by hydrogen bridges. Thus helical chains are formed which stretch in the direction of the screw axes. The EPR spectrum of 3 was measured.  相似文献   

12.
Antimony(III) complexes of thioamides [thioamides=thiourea (Tu), N,N′‐dimethylthiourea (Dmtu), tetramethylthiourea (Tmtu), imidazolidine‐2‐thione (Imt) and diazinane‐2‐thione (Diaz)] with the general formulae, Sb(thione)nCl3 (n=1, 2, 2.5, 3) were prepared and characterized by elemental analysis, IR and NMR (1H, 13C) spectroscopic methods. The spectral data of the complexes are consistent with the coordination of the thiones to antimony(III). The crystal structure of one of them, {[Sb(Imt)2Cl2]2(μ2‐Imt)}Cl2 ( 1 ), was determined by X‐ray crystallography, which shows that the complex is dinuclear consisting of two [Sb(Imt)2Cl2] units bridged by an Imt molecule. In 1 , the antimony atom is bonded to two chlorine atoms, two sulfur atoms of coordinated Imt molecules and one sulfur atom of a bridging Imt molecule. The antimony environment can be considered to be distorted octahedral with one Cl? ion weakly bound to antimony.  相似文献   

13.
The title compound, [Cu(C2N3)2(C12H8N2)]n, has a sheet‐like structure, built by [Cu(phen)(dca)2]n (phen is 1,10‐phenanthroline and dca is dicyan­amide) chains which are interconnected by secondary long Cu—N bonds between the chains. The Cu2+ ion is in a distorted tetragonal bipyramidal (5 + 1) coordination environment. The sheets stack into the three‐dimensional crystal structure through aromatic interactions between the coordinated phen ligands of adjacent sheets.  相似文献   

14.
Dimethylsulfoxide Complexes of Beryllium(II) Chloride. Crystal Structures of [Be(OSMe2)4]Cl2, [Be(OSMe2)3(H2O)]Cl2 and [Be(OSMe2)2(H2O)2]Cl2 Single crystals of the mixed ligand complexes [Be(OSMe2)3(H2O)]Cl2 ( 2 ) and [Be(OSMe2)2(H2O)2]Cl2 ( 3 ) were obtained from saturated solutions of [Be(OSMe2)4]Cl2 ( 1 ) in acetonitrile and dichloromethane, respectively, in the presence of traces of water, while single crystals of 1 were available by reaction of the carbodiphosphorane complex [BeCl2{C(PPh3)2}] with DMSO/toluene solution. All complexes are characterized by X‐ray diffraction and IR spectroscopy. 1 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 962.4(1), b = 1888.8(2), c = 2115.8(2) pm, R1 = 0.0344. 1 consists of [Be(OSMe2)4]2+ cations with distorted tetrahedral coordination of the oxygen atoms of the DMSO molecules with Be–O distances of 161.9 pm on average, and chloride ions. 2 : Space group , Z = 2, lattice dimensions at 193 K: a = 903.9(2), b = 925.2(3), c = 1121.3(3) pm, α = 93.65(3)°, β = 108.03(3)°, γ = 115.20(3)°, R1 = 0.0472. 3 : Space group , Z = 2, lattice dimensions at 173 K: a = 788.2(2), b = 801.6(2), c = 1070.7(3) pm, α = 86.66(2)°, β = 83.80(2)°, γ = 71.00(2)°, R1 = 0.0699. 2 and 3 also form dications with distorted tetrahedral coordination of the Be2+ ions by the oxygen atoms of DMSO and water molecules, respectively. The chloride ions are associated by strong hydrogen bonds O–H···Cl to give three‐dimensional networks.  相似文献   

15.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

16.
Nitrosyl Complexes of Molybdenum (+II). Crystal Structures of [Mo(NO)Cl3 · POCl3]2 and [AsPh4]2[Mo(NO)Cl5] · 2 CH2Cl2 Solutions of MoCl5 in POCl3 react with NOCl forming the nitrosyl compound Mo(NO)Cl3 · 2POCl3 ( I ), which in CH2Cl2 cleaves off one solvate molecule, yielding the dimeric complex [Mo(NO)Cl3 · POCl3]2 ( II ). Reaction with AsPh4Cl in dichloro methane leads to the nitrosyl complexes AsPh4[Mo(NO)Cl4] · CH2Cl2 ( III ) and [AsPh4]2[Mo(NO)Cl5] · 2CH2Cl2 ( IV ), respectively. The i.r. spectra are recorded and assigned. [Mo(NO)Cl3 · POCl3]2 crystallizes monoclinic in the space group P21/c with two dimeric units per unit cell. The crystal structure was determined by X-ray diffraction methods (R = 0.040; 1391 observed, independent reflexions). Complex II is linked by chlorine bridges, forming a dimeric, centrosymmetric molecule of symmetry Ci. The N? O bond of the nitrosyl ligand is extremely short (108 pm), the Mo? N bond (181 pm) corresponds to a double bond. In trans position to the NO ligand, which is coordinated in linear array, there is the O atom of the solvate molecule POCl3. [AsPh4]2[Mo(NO)Cl5] · 2 CH2Cl2 crystallizes triclinic in the space group P1 with two units per unit cell (R = 0.039; 1967 observed, independent reflexions). The molybdenum atom is coordinated octahedrally by five Cl ligands and a nitrosyl group, as well coordinated in linear array (Mo? N? O 174°). The nitrosyl ligand exerts a significant trans-effect (r Mo? Cl(trans) = 247 pm, r MoCl4(eq)(average) = 239 pm).  相似文献   

17.
The title compound, [Cu(C2N3)(C12H8N2)2]ClO4, represents a relatively rare class of compounds with dicyan­amide coordinated in a monodentate manner. The structure is formed by the [Cu{N(CN)2}(phen)2]+ complex cation (phen is 1,10‐phenanthroline) and an uncoordinated ClO4 anion. The Cu atom is five‐coordinate, with a slightly distorted trigonal–bipyramidal environment. The dicyan­amide ligand is coordinated through one nitrile N atom in the equatorial plane, at a distance of 2.033 (6) Å from the metal. The two axial Cu—N distances are similar [mean 1.999 (4) Å] and are substantially shorter than the remaining two equatorial Cu—N bonds [mean 2.087 (1) Å].  相似文献   

18.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2} chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°.  相似文献   

19.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

20.
Copper Complexes of the New Chelate Ligand 1‐Methyl‐2‐(2‐thiophenolato)‐1H‐benzimidazole (mtpb) and of its Oxidation Products Anodic electrolysis of copper in acetonitrile in the presence of Hmtpb leads to formation of yellow [Cu4(mtbp)4] which was crystallized as a dichloromethane solvate with two crystallographically independent cluster molecules in the unit cell. The copper(I) atoms exhibit slightly pyramidal S2N coordination with bridging thiolate sulfur atoms. The two clusters contain the four copper atoms arranged in a more (Cu1‐Cu4) or less (Cu5‐Cu8) distorted bisphenoidal arrangement. Reaction of mtpb with Cu(ClO4)2 under anoxic conditions also produces [Cu4(mtpb)4]. However, the admittance of O2 in the reaction of mtpb with copper(II) acetate in methanol causes oxidation of the sulfur atoms; a square‐pyramidal configurated copper(II) complex [Cu(CH3CO2‐κ2O)(L1‐κN)(L2‐κN, O)] has been isolated and crystallographically characterized in which L1 is the neutral sulfinic methyl ester and L2 is the sulfonate derived from mtpb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号