首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Temperature‐dependent nuclear magnetic resonance (NMR) and CD spectra of methanol solutions of a β‐heptapeptide have been interpreted in such a way that the secondary structure, a 314‐helix, is assumed to be stable in a temperature range of between 298 and 393 K. This is in contrast to the results of a 50‐ns molecular dynamics simulation using the GROMOS 96 force field, which found a melting temperature of about 340 K. This discrepancy is addressed by further computational studies using the OPLS‐AA force field. The conformational energetics of N‐formyl‐3‐aminobutanamide in vacuo are obtained using ab initio and density functional quantum‐mechanical calculations at the HF/6‐31G*, B3LYP/6‐31G*, and B3LYP/6‐311+G* levels of theory. The results permit development of torsional parameters for the OPLS‐AA force field that reproduce the conformational energetics of the monomer. By varying the development procedure, three parameter sets are obtained that focus on reproducing either low‐energy or high‐energy conformations. These parameter sets are tested by simulating the reversible folding of the β‐heptapeptide in methanol. The melting temperature of the helix formed (>360 K) is found to be higher than the one obtained from simulations using the GROMOS 96 force field (∼340 K). Differences in the potential energy functions of the latter two force fields are evaluated and point to the origins of the difference in stability. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 774–787, 2000  相似文献   

2.
《Soft Materials》2013,11(1):27-45
Abstract

The charge on the ester oxygen of the sn2 group of the dipalmitoylphosphatidylcholine (DPPC) has a remarkable effect on the square area per lipid in simulations of a hydrated bilayer. This is in contrast to simulations of nonpolar, neutral lipids, where it has been found to have little effect. The charges associated with the GROMOS96 45A3 and 45A4 biomolecular force fields have been previously shown to cause significant membrane shrinkage. We find that the use of larger charges at the ester groups alone (as opposed to on all the polar moieties in the head group) remedies the shrinkage. The source of this effect in DPPC lies in the fact that the charge distribution of this polar group profoundly influences its free energy of hydration and, correspondingly, the water distribution around it. In an attempt to rationally tune the ester parameters, the repulsive Lennard–Jones parameters that represent the van der Waals interaction have been refined to reproduce the experimental density and heat of vaporization, and the charges of the ester groups have been tuned to reproduce the experimental free energies of hydration of a series of alkane esters. The new parameters form part of the GROMOS96 53A5 and 53A6 force fields. However, with the new force‐field parameters, the area per lipid in simulations of hydrated DPPC bilayers lies below that of the physiological liquid‐crystalline phase, the implications of which are discussed.  相似文献   

3.
An improved nucleic acid parameter set for the GROMOS force field   总被引:1,自引:0,他引:1  
Over the past decades, the GROMOS force field for biomolecular simulation has primarily been developed for performing molecular dynamics (MD) simulations of polypeptides and, to a lesser extent, sugars. When applied to DNA, the 43A1 and 45A3 parameter sets of the years 1996 and 2001 produced rather flexible double-helical structures, in which the Watson-Crick hydrogen-bonding content was more limited than expected. To improve on the currently available parameter sets, the nucleotide backbone torsional-angle parameters and the charge distribution of the nucleotide bases are reconsidered based on quantum-chemical data. The new 45A4 parameter set resulting from this refinement appears to perform well in terms of reproducing solution NMR data and canonical hydrogen bonding. The deviation between simulated and experimental observables is now of the same order of magnitude as the uncertainty in the experimental values themselves.  相似文献   

4.
5.
Nucleic acid force fields have been shown to reproduce structural properties of DNA and RNA very well, but comparative studies with respect to thermodynamic properties are rare. As a test for thermodynamic properties, we have computed hydration free energies and chloroform‐to‐water partition coefficients of nucleobases using the AMBER‐99, AMBER‐gaff, CHARMM‐27, GROMOS‐45a4/53a6 and OPLS‐AA force fields. A mutual force field comparison showed a very large spread in the calculated thermodynamic properties, demonstrating that some of the parameter sets require further optimization. The choice of solvent model used in the simulation does not have a significant effect on the results. Comparing the hydration free energies obtained by the various force fields to the adenine and thymine experimental values showed a very large deviation for the GROMOS and AMBER parameter sets. Validation against experimental partition coefficients showed good agreement for the CHARMM‐27 parameter set. In view of mutation studies, differences in partition coefficient between two bases were also compared, and good agreement between experiments and calculations was found for the AMBER‐99 parameter set. Overall, the CHARMM‐27 parameter set performs best with respect to the thermodynamic properties tested here. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Successive parameterizations of the GROMOS force field have been used successfully to simulate biomolecular systems over a long period of time. The continuing expansion of computational power with time makes it possible to compute ever more properties for an increasing variety of molecular systems with greater precision. This has led to recurrent parameterizations of the GROMOS force field all aimed at achieving better agreement with experimental data. Here we report the results of the latest, extensive reparameterization of the GROMOS force field. In contrast to the parameterization of other biomolecular force fields, this parameterization of the GROMOS force field is based primarily on reproducing the free enthalpies of hydration and apolar solvation for a range of compounds. This approach was chosen because the relative free enthalpy of solvation between polar and apolar environments is a key property in many biomolecular processes of interest, such as protein folding, biomolecular association, membrane formation, and transport over membranes. The newest parameter sets, 53A5 and 53A6, were optimized by first fitting to reproduce the thermodynamic properties of pure liquids of a range of small polar molecules and the solvation free enthalpies of amino acid analogs in cyclohexane (53A5). The partial charges were then adjusted to reproduce the hydration free enthalpies in water (53A6). Both parameter sets are fully documented, and the differences between these and previous parameter sets are discussed.  相似文献   

7.
8.
We present a systematic test of the performance of three popular united‐atom force fields—OPLS‐UA, GROMOS and TraPPE—at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united‐atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the magnitude of solvation free energies by about 6% (RMSD of 1.2 kJ/mol). Conversely, both GROMOS and OPLS‐UA systematically overpredict solvation free energies (by ∼13% and 15%, respectively). The systematic trends suggest that all models can be improved by a slight adjustment of their Lennard‐Jones parameters. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Different biomolecular force fields (OPLS‐AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the Ca atoms of lysozymes are about 0.1 to 0.2 nm from OPLS‐AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B‐factors, whereas OPLS‐AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten‐fold slower than in bulk phase. The directional and average water diffusivities from OPLS‐AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS‐AA and AMBER03 predict larger hydrophilic solvent‐accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS‐AA for lysozyme and the Kirkwood‐Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
In this study, we propose newly derived parameters for phosphate ions in the context of the GROMOS force field parameter sets. The non‐bonded parameters used up to now lead to a hydration free energy, which renders the dihydrogen phosphate ion too hydrophobic when compared to experimentally derived values, making a reparametrization of the phosphate moiety necessary. Phosphate species are of great importance in biomolecular simulations not only because of their crucial role in the backbone of nucleic acids but also as they represent one of the most important types of post‐translational modifications to protein side‐chains and are an integral part in many lipids. Our re‐parametrization of the free dihydrogen phosphate (H PO ) and three derivatives (methyl phosphate, dimethyl phosphate, and phenyl phosphate) leads, in conjunction with the previously updated charged side‐chains in the GROMOS parameter set 54A8, to new nucleic acid backbone parameters and a 54A8 version of the widely used GROMOS protein post‐translational modification parameter set. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
12.
We have compared molecular dynamics (MD) simulations of a β-hairpin forming peptide derived from the protein Nrf2 with 10 biomolecular force fields using trajectories of at least 1 μs. The total simulation time was 37.2 μs. Previous studies have shown that different force fields, water models, simulation methods, and parameters can affect simulation outcomes. The MD simulations were done in explicit solvent with a 16-mer Nrf2 β-hairpin forming peptide using Amber ff99SB-ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, GROMOS96 43a1p, GROMOS96 53a6, CHARMM27, and OPLS-AA/L force fields. The effects of charge-groups, terminal capping, and phosphorylation on the peptide folding were also examined. Despite using identical starting structures and simulation parameters, we observed clear differences among the various force fields and even between replicates using the same force field. Our simulations show that the uncapped peptide folds into a native-like β-hairpin structure at 310 K when Amber ff99SB-ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, GROMOS96 43a1p, or GROMOS96 53a6 were used. The CHARMM27 simulations were able to form native hairpins in some of the elevated temperature simulations, while the OPLS-AA/L simulations did not yield native hairpin structures at any temperatures tested. Simulations that used charge-groups or peptide capping groups were not largely different from their uncapped counterparts with single atom charge-groups. On the other hand, phosphorylation of the threonine residue located at the β-turn significantly affected the hairpin formation. To our knowledge, this is the first study comparing such a large set of force fields with respect to β-hairpin folding. Such a comprehensive comparison will offer useful guidance to others conducting similar types of simulations.  相似文献   

13.
The C96 and AMBER95 force fields were compared with small model peptides Ac‐(Ala)n‐NMe (Ac = CH3CO, NMe = NHCH3, n=2 and 3) in vacuo and in TIP3P water by computing the free‐energy profiles using multicanonical molecular dynamics method. The C96 force field is a modified version of the AMBER95 force field, which was adjusted to reproduce the energy difference between extended β‐ and constrained α‐helical energies for the alanine tetrapeptide, obtained by the high level ab initio MO method. The slight modification resulted in a large difference in the free energy profiles. The C96 force field prefers relatively extended conformers, whereas the AMBER95 force field favors turn conformations. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 748–762, 2000  相似文献   

14.
A thin-layer chromatographic method is presented that allows determination of long-chain aliphatic hydrocarbons in the benzene-soluble fraction of airborne particulate extracts by direct scanning in a spectrophotofluorimeter. Silica-gel plates were impregnated with rhodamine 6G, and after development the separated aliphatic hydrocarbon spot was scanned on a scanning spectrophotofluorimeter and measured. The area under the peak was concentration-dependent, with a useful range of analysis from 0.1 meg to at least 10 meg of aliphatics in terms of n-docosane. Urban air samples contained 1.6 to 2.7 meg of aliphatics per cubic meter; nonurban samples had 0.12 to 0.24 meg. Since hydrocarbon carcinogens are ubiquitous, it is suggested that their concentration is of secondary importance in many cases, whereas the much higher concentrations of the cocarcinogens (such as large aliphatic hydrocarbons) and prolonged exposure to them are probably of prime importance. A number of polynuclear aromatic hydrocarbons and pesticides were screened and were found not to interfere with the determination of the aliphatic hydrocarbons. Their chromatographic and fluorimetric properties under experimental conditions are discussed.  相似文献   

15.
This article presents a reoptimization of the GROMOS 53A6 force field for hexopyranose-based carbohydrates (nearly equivalent to 45A4 for pure carbohydrate systems) into a new version 56A(CARBO) (nearly equivalent to 53A6 for non-carbohydrate systems). This reoptimization was found necessary to repair a number of shortcomings of the 53A6 (45A4) parameter set and to extend the scope of the force field to properties that had not been included previously into the parameterization procedure. The new 56A(CARBO) force field is characterized by: (i) the formulation of systematic build-up rules for the automatic generation of force-field topologies over a large class of compounds including (but not restricted to) unfunctionalized polyhexopyranoses with arbritrary connectivities; (ii) the systematic use of enhanced sampling methods for inclusion of experimental thermodynamic data concerning slow or unphysical processes into the parameterization procedure; and (iii) an extensive validation against available experimental data in solution and, to a limited extent, theoretical (quantum-mechanical) data in the gas phase. At present, the 56A(CARBO) force field is restricted to compounds of the elements C, O, and H presenting single bonds only, no oxygen functions other than alcohol, ether, hemiacetal, or acetal, and no cyclic segments other than six-membered rings (separated by at least one intermediate atom). After calibration, this force field is shown to reproduce well the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. As a result, the 56A(CARBO) force field should be suitable for: (i) the characterization of the dynamics of pyranose ring conformational transitions (in simulations on the microsecond timescale); (ii) the investigation of systems where alternative ring conformations become significantly populated; (iii) the investigation of anomerization or epimerization in terms of free-energy differences; and (iv) the design of simulation approaches accelerating the anomerization process along an unphysical pathway.  相似文献   

16.
In this work, parameters are optimized for a charge‐on‐spring based polarizable force field for linear alcohols. We show that parameter transferability can be obtained using a systematic approach in which the effects of parameter changes on physico‐chemical properties calculated from simulation are predicted. Our previously described QM/MM calculations are used to attribute condensed‐phase polarizabilities, and starting from the non‐polarizable GROMOS 53A5/53A6 parameter set, van der Waals and Coulomb interaction parameters are optimized to reproduce pure‐liquid (thermodynamic, dielectric, and transport) properties, as well as hydration free energies. For a large set of models, which were obtained by combining small perturbations of 10 distinct parameters, values for pure‐liquid properties of the series methanol to butanol were close to experiment. From this large set of models, we selected 34 models without special repulsive van der Waals parameters to distinguish between hydrogen‐bonding and non‐hydrogen‐bonding atom pairs, to make the force field simple and transparent. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ significantly in regard to the nonbonded parameters for polar functional groups and their ability to reproduce the correct solvation and partitioning behavior of small molecular analogues of the amino acid side chains. Despite the differences in the force field parameters no major differences could be detected in a wide range of structural properties such as the root-mean-square deviation from the experimental structure, radii of gyration, solvent accessible surface, secondary structure, or hydrogen bond propensities on a 5 to 10 ns time scale. The small differences that were observed correlated primarily with the presence of charged residues as opposed to residues that differed most between the parameter sets. The work highlights the variation that can be observed in nanosecond simulations of protein systems and implications of this for force field validation, as well as for the analysis of protein simulations in general.  相似文献   

18.
《Fluid Phase Equilibria》2006,248(1):50-55
Monte Carlo simulations in the isobaric–isothermal and Gibbs ensembles are used to compute liquid densities and vapor–liquid coexistence curves for a series of small organic molecules for the AMBER-96, CHARMM22, COMPASS, GROMOS 43A1, OPLS-aa, TraPPE-UA, and UFF force fields. The simulation results are compared with experimental measurements to provide an assessment of the accuracy expected when using these force fields to study unknown molecules.  相似文献   

19.
Recent extensions of potential energy functions used in empirical force field calculations have involved the inclusion of electronic polarizability. To properly include this extension into a potential energy function it is necessary to systematically and rigorously optimize the associated parameters based on model compounds for which extensive experimental data are available. In the present work, optimization of parameters for alkanes in a polarizable empirical force field based on a classical Drude oscillator is presented. Emphasis is placed on the development of parameters for CH3, CH2, and CH moieties that are directly transferable to long chain alkanes, as required for lipids and other biomolecules. It is shown that a variety of quantum mechanical and experimental target data are reproduced by the polarizable model. Notable is the proper treatment of the dielectric constant of pure alkanes by the polarizable force field, a property essential for the accurate treatment of, for example, hydrophobic solvation in lipid bilayers. The present alkane force field will act as the basis for the aliphatic moieties in an extensive empirical force field for biomolecules that includes the explicit treatment of electronic polarizability.  相似文献   

20.
Inhalable aerosols collected in downtown Milan during a whole‐year field campaign (from November 2000 to October 2001) were investigated to determine amounts of n‐alkanes, polynuclear aromatic hydrocarbons (PAH), including benzo[a]pyrene (BaP), nitrated PAH (NPAH), and monocarboxylic n‐alkanoic acids. Combustion processes including vehicle emission were confirmed as the most important sources affecting air quality, whereas release of organic material from biota contributed a few percent. The occurrence of in‐situ reactions in the atmosphere promoted by oxidants modified, to some extent, the composition of both PAH and NPAH fractions, by reducing the amount of BaP present in the aerosols and increasing that of NPAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号