共查询到20条相似文献,搜索用时 0 毫秒
1.
Samaresh Ghosh 《European Polymer Journal》2003,39(11):2141-2146
A novel polyamidoamine (PAMAM) side chain dendritic polyesterurethane (SCDPEU) block architecture derived from ester terminated polyamidoamine dendritic diol (G2.3), sebacoyl chloride and 2,4-toluidene diisocyanate (TDI) is reported. This material was characterized by means of IR and NMR spectroscopies, as well as by intrinsic viscosity and differential scanning calorimetry measurements. SCDPEU synthesis was conducted in bulk by using the catalytic amount of dibutyl tin dilaurate (DBTDL). 相似文献
2.
Helou Xie Tianhui Hu Xuefei Zhang Hailaing Zhang Erqiang Chen Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2008,46(22):7310-7320
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008 相似文献
3.
Poly(stearyl methacrylate‐co‐methacrylic acid) (SMA) and its sodium ionomer (SMI) were synthesized and the permeability of the model drug through the SMA and SMI films was measured. The side‐chain crystalline structure for the dried and hydrated SMA, SMI was investigated using DSC and WAXS. The side‐chain crystalline structure of the hydrated SMI was much more stable than that of the hydrated SMA at room temperature. The temperature‐sensitive phase transition of the side‐chain crystalline structure for the hydrated SMI was also studied by the temperature variable WAXS experiment. The temperature‐sensitive permeation of the hydrophilic model drug through SMI was observed around 20 °C, whereas the drug permeation through SMA was almost constant within the temperature range studied. The change of drug permeability through the SMA and SMI films with temperature seems to be associated with the side‐chain crystalline structure of the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 823–830, 2000 相似文献
4.
Chun‐Yan Hong Ye‐Zi You Jun Liu Cai‐Yuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6379-6393
A new reversible addition‐fragmentation chain transfer (RAFT) agent, dendritic polyester with 16 dithiobenzoate terminal groups, was prepared and used in the RAFT polymerization of styrene (St) to produce star polystyrene (PSt) with a dendrimer core. It was found that this polymerization was of living characters, the molecular weight of the dendrimer‐star polymers could be controlled and the polydispersities were narrow. The dendrimer‐star block copolymers of St and methyl acrylate (MA) were also prepared by the successive RAFT polymerization using the dendrimer‐star PSt as macro chain transfer agent. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6379–6393, 2005 相似文献
5.
《先进技术聚合物》2018,29(3):1039-1047
A series of side‐chain liquid crystal polymers (SCLCPs) without the spacer, named poly[ω‐(4′‐n‐alkyl oxybiphenyl‐4‐oxy)methacrylate (PMBiCm, m = 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18), have been synthesized. The novel polymer organogels were prepared by introducing PMBiCm into common organic solvents. Solubility and gel properties of polymer organogelators differ widely according to the nature of the solvents. In aromatic solvents, PMBiCm completely dissolved in solvent due to good compatibility between biphenyl mesogen group and aromatic solvents. Poly[ω‐(4′‐n‐alkyl oxybiphenyl‐4‐oxy)methacrylate were still insoluble in polar solvents such as acetone, ethanol, DMF, ethylene glycol, and n‐butanol. This behavior resulted from mismatch of solubility parameter between PMBiCm and solvent. Considering the factors of solvent, we have systematically studied 3 organic solvents with different polarities (butyl acetate, n‐butyl amine, and n‐heptane). It is found that the length of the alkoxy tail chain of the SCLCPs has significant influence on gelability and gel thermal stability. In further studies discussed by UV‐Vis spectroscopy, the results revealed that the π‐π stacking interaction of the biphenyl mesogens might be the key factor for guiding the self‐assembly processes and the polymer gel formation. This work is useful to comprehending physical mechanism of polymer organogels. Meanwhile, those expand SCLCPs to a wide range of applications. 相似文献
6.
Xiaoqiang Xue Wei Zhang Zhenping Cheng Jian Zhu Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2008,46(16):5626-5637
A novel azo‐containing dithiocarbamate, 1‐phenylethyl N,N‐(4‐phenylazo) phenylphenyldithiocarbamate (PPADC), was successfully synthesized and used to mediate the polymerization of methyl acrylate (MA) and styrene (St). In the presence of PPADC, the reversible addition‐fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA, however, the slightly ill‐controlled in the case of St. Interestingly, the polymerization of St could be well‐controlled when using PPADC as the initiator in the presence of CuBr/PMDETA via atom transfer radical polymerization (ATRP) technique. In the cases of RAFT polymerization of MA and ATRP of St, the kinetic plots were both of first‐order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn). The molecular weight of the polymer measured by gel permeation chromatographer (GPC) was also close to the theoretical value (Mn(th)). The obtained polymer was characterized by 1H‐NMR analysis, ultraviolet absorption, FTIR spectra analysis and chain‐extension experiments. Furthermore, the photoresponsive behaviors of azobenzene‐terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5626–5637, 2008 相似文献
7.
《Surface and interface analysis : SIA》2004,36(4):323-333
Angle‐resolved XPS data (elemental quantification and high‐energy‐resolution C 1s) are presented for ten polymers with side‐chains of the form ? OCO(CF2)yF, ? COO(CH2)2OCO(CF2)yF (y = 1, 2, 3) and ? COO(CH2)x(CF2)yF (x = 1, y = 1, 2, 3; x = 2, y = 8). Particular attention was paid to charge compensation and speed of data acquisition, with co‐addition from multiple fresh samples to give spectra with good energy resolution and good signal‐to‐noise ratio free from the effects of x‐ray‐induced degradation. Water contact angles for the polymers are also reported. The XPS data demonstrate preferential surface segregation of fluorine‐containing groups for all but the shortest side‐chain polymer, where the ? OCOCF3 side‐chain either does not surface segregate or is too short for surface segregation to be detectable by angle‐resolved XPS. In the other polymers studied the relative positions of functional groups in the side‐chains correlate with the angle‐resolved behaviour of the corresponding C 1s components. This shows that the surface side‐chains are oriented towards the polymer surface. For the ? COO(CH2)2OCO(CF2)yF (y = 1) side‐chain, the angle‐resolved C 1s data suggest reduced ordering and linearity compared with y = 2 and 3. For any particular series of polymers, e.g. ? COO(CH2)x(CF2)yF, the water contact angles increase with y, consistent with burying of the hydrophilic ester groups as y increases. For any particular value of y the sequence of water contact angles is ? COO(CH2)x(CF2)yF > ? OCO(CF2)yF ~ ? COO(CH2)2OCO(CF2)yF, suggesting greater ordering and density of fluorocarbon species at the surface of the ? COO(CH2)x(CF2)yF side‐chain polymers compared with the other polymers studied. For the ? COO(CH2)2(CF2)8F polymer a water contact angle of 124° is measured, which is greater than that of poly(tetrafluoroethene). The ? COO(CH2)2OCO(CF2)F polymer is unusual in that it shows a particularly low water contact angle (83° ), suggesting that the probe fluid is able to sense both ester groups, consistent with the reduced ordering of the side‐chain detected by angle‐resolved XPS. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
Jianxin Geng Enle Zhou Gao Li Jacky Wing Yip Lam Ben Zhong Tang 《Journal of Polymer Science.Polymer Physics》2004,42(7):1333-1341
Electric‐field‐induced molecular alignments of side‐chain liquid‐crystalline polyacetylenes [? {HC?C[(CH2)mOCO‐biph‐OC7H15]}? , where biph is 4,4′‐biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X‐ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of PA9EO7 was achieved within a temperature range between the isotropic‐to‐smectic A transition temperature and 115 °C, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric‐field‐induced molecular orientation of a side‐chain liquid‐crystalline polymer with a stiff backbone was studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1333–1341, 2004 相似文献
9.
以乙二胺和丙烯酸甲酯为原料,经过重复Michael和酯氨解反应,制备出二代(2.0 G)树枝状聚酰胺胺(PAMAM).PAMAM与2,2,6,6-四甲基哌啶酮氮氧自由基经缩合、还原将PAMAM与2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)键连,得到PAMAM负载的TEMPO(PAMAM-TEMPO).采用1H NMR、13C NMR以及FT-IR等手段对中间体及最终产物进行了表征.将PAMAM-TEMPO与CuBr2以及2,2-联吡啶结合构成催化体系,用于分子氧为氧化剂的醇的选择性氧化反应,结果表明该体系对苄基以及烯丙基伯醇的氧化显示出良好的催化活性和选择性.结果还证明,TEMPO的负载使氧化产物醛很容易与催化体系分离,而且催化剂可以循环使用. 相似文献
10.
Fang‐Jung Huang Tzong‐Liu Wang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(2):290-302
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004 相似文献
11.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(15):1617-1629
A novel series of hard‐soft‐hard triblock azo‐copolymers (TBCs) composed of poly(2‐[2‐(4‐cyano‐azobenzene‐4‐oxy)ethylene‐oxy]ethyl methacrylate) (PCEAMA), poly(methyl methacrylate) (PMMA) and poly(p‐dodecylphenyl‐N‐acrylamide) (PDOPAM) were synthesized by employing reversible addition‐fragmentation chain transfer polymerization. Chemical structures and molecular weights were characterized by 1H nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Thermal behavior, mesophase, photochemistry and morphology were investigated using differential scanning calorimetry (DSC), optical polarizing microscopy (OPM), ultraviolet–visible spectrophotometry (UV–vis), atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS). Kinetic studies confirmed characteristic of controlled/living radical polymerization with low polydispersities (≤1.40). TBCs manifested both endothermic and exothermic transition peaks assigned to smectic to nematic, nematic to smectic, and smectic‐A to smectic‐C phases. TBCs having hight azo fractions of 39 and 34 wt % revealed textures of smectic phase whereas TBC possessing 30 wt % of azo content exhibited poor texture, suggesting nematic phase. Regarding TBC with low azo ratio (25 wt %), neither mesophase texture was found. All TBCs showed photoresponsive behavior under UV–vis irradiation or thermal relaxation. TBC‐1 with PCAEMA (39 wt %), PMMA (40 wt %) and PDOPAM (21 wt %) generated a mixture of cylinder and lamellar nanostructures compared to TBC‐2 and TBC‐3 which formed lamellae. However, TBC‐4 having the highest PDOPAM fraction (50 wt %) produced hexagonal cylindrical nanostructure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1617–1629 相似文献
12.
Ying Li Yingying Fu Hui Tong Zhiyuan Xie Lixiang Wang 《Journal of polymer science. Part A, Polymer chemistry》2013,51(13):2910-2918
Two phenazine donor–acceptor‐conjugated copolymers (P1 and P2) with the same polymer backbone but different anchoring positions of alkoxy chain on the phenazine unit were investigated to identify the effect of changing the position of alkoxy chains on their optical, electrochemical, blend film morphology, and photovoltaic properties. Although the optical absorption and frontier orbital energy levels were insensitive to the position of alkoxy chains, the film morphologies and photovoltaic performances changed significantly. P1/PC71BM blend film showed the formation of phase separation with large coarse aggregates, whereas P2/PC71BM blend film was homogeneous and smooth. Accordingly, power conversion efficiency (PCE) of photovoltaic devices increased from 1.50% for P1 to 2.54% for P2. In addition, the PCE of the polymer solar cell based on P2/PC71BM blend film could be further improved to 3.49% by using solvent vapor annealing treatment. These results clearly revealed that tuning the side‐chain position could be an effective way to adjust the morphology of the active layer and the efficiency of the photovoltaic device. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2910–2918 相似文献
13.
Haojun Fan Yi Gu Meili Xie 《Journal of polymer science. Part A, Polymer chemistry》2003,41(4):554-559
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003 相似文献
14.
Mitchell Anthamatten Paula T. Hammond 《Journal of Polymer Science.Polymer Physics》2001,39(21):2671-2691
Side‐chain liquid‐crystalline‐b‐amorphous copolymers combine the thermotropic ordering of liquid crystals (LCs) with the physics of block copolymer phase segregation. In our earlier experiments, we observed that block copolymer order–order and order–disorder transitions could be induced by LC transitions. Here we report the development of a free‐energy model to understand the interplay between LC ordering and block copolymer morphology in an incompressible melt. The model considers the interaction between LC moieties, the stretching of amorphous chains from curved interfaces, interfacial surface contributions, and elastic deformation of the nematic phase. The LC block is modeled with Wang and Warner's theory, in which nematogens interact through mean‐field potentials, and the LC backbone is modeled as a wormlike chain. Free energy is estimated for various morphologies: homogeneous, lamellar, cylinder micelle, and spherical micelle. Phase diagrams were constructed by iteration over temperature and composition ranges. The resulting composition diagrams are highly asymmetric, and a variety of first‐order transitions are predicted to occur at the LC clearing temperature. Qualitatively, nematic deformation energies destabilize curved morphologies, especially when the LC block is in the center of the block copolymer micelle. The thermodynamics of diblocks with laterally attached, side‐on mesogens are also explored. Discussion focuses on how well the model captures experimental phenomena and how the predicted phase boundaries are affected by changes in polymer architecture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2671–2691, 2001 相似文献
15.
Shirong Pan Duanwen Cao Huan Huang Wu Yi Linhao Qin Min Feng 《Macromolecular bioscience》2013,13(4):422-436
A new derivative of polyamidoamine and polyethylenimine, G2.5‐PEI 423 or G1.5‐PEI 423, is prepared by an amidation reaction of PAMAM G2.5 or PAMAM G1.5 using PEI 423. The polycations show a great ability to combine with pDNA to form complexes, which protect the pDNA from nuclease degradation. The polymers display stronger buffer capacity and lower cytotoxicity. The complexes have particle sizes of 120–180 nm and zeta potentials of 20–40 mV. The G2.5‐PEI 423 complexes display much higher transfection efficiencies than PAMAM G5 and Lipo‐2k, and the G1.5‐PEI 423 complexes display higher transfection efficiencies than PAMAM G4 and PEI‐25k. The complexes possess better serum‐resistant capacity. The G2.5‐PEI 423 has a great potential to be used as a serum‐resistant gene vector.
16.
Bin Mu Xiao Li Keyang Chen Yongming Zeng Jianglin Fang Dongzhong Chen 《Journal of polymer science. Part A, Polymer chemistry》2017,55(15):2544-2553
Liquid crystalline block copolymers (LCBCPs) are fascinating for their combining molecular level liquid crystalline orders and microphase separated multidomain morphologies. Here in this article, a series of PEG‐containing side‐chain discotic LCBCPs of PEG‐b‐Pm‐n with variant spacer length m = 6, 10 and degree of polymerization (DP) of discotic LC block from n = 10 to 45, have been well‐synthesized via reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. The RAFT process mediated by macromolecular chain transfer agent (macroCTA) shows remarkable monomer concentration dependence. The influence of the introduced PEG block on the nano‐scale microphase‐segregation and mesophase organization is closely related to the side‐chain triphenylene (TP) discogens stacking mode dependent on the spacer length. Wherein, the PEG‐b‐P6‐n series with a six‐methylene spacer exhibit consistent microphase separation with slightly disturbed yet ordered columnar structures. While for PEG‐b‐P10‐n series with a longer ten‐methylene spacer, the columnar organization in the copolymers is even improved in contrast with the low order of randomly TP stacking in their corresponding homopolymers. This work offers a viable and inspiring pathway for controlled synthesis of block copolymers with bulky side groups, as well as enhances in‐depth understanding of the hierarchical superstructure organization in discotic units involved complex block copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2544–2553 相似文献
17.
Tzung‐Chi Liang Hong‐Cheu Lin 《Journal of polymer science. Part A, Polymer chemistry》2009,47(11):2734-2753
Two H‐bonded acceptor (H‐acceptor) homopolymers 14 and 17 were successfully prepared by polymerization of fluorescent pyridyl monomers PBT and PBOT ( 12 and 13 ), which were synthesized via Sonogashira coupling and Wittig‐Horner reactions. To increase the glass transition temperatures as well as reduce the π‐π stacking of the photoluminescent (PL) H‐acceptor copolymers and their H‐bonded polymer complexes, fluorescent monomers 12 and 13 were copolymerized with N‐vinylcarbazole monomer CAZ (23) to produce H‐acceptor copolymers 15–16 and 18–19 . Supramolecular side‐chain and crosslinking polymers (i.e., H‐bonded polymer complexes) obtained by complexation of light‐emitting H‐acceptor polymers 14–19 with various proton donor (H‐donor) acids 20–22 were further characterized by DSC, POM, FTIR, XRD, and PL measurements. The mesomorphic properties can be tuned from the nematic phase in H‐acceptor homopolymers ( 14 and 17 ) to the tilted smectic C phase in their H‐bonded polymer complexes ( 14/20–21 and 17/20–22 ) by the introduction of H‐donor acids (20–22). Moreover, the PL properties of light‐emitting H‐acceptor polymers can be adjusted not only by the central structures of the conjugated pyridyl cores but also by their surrounding nonfluorescent H‐donor acids. In general, redder shifts of PL emissions in H‐bonded polymer complexes occurred when the light‐emitting H‐acceptor polymers were complexed with H‐donors having smaller pKa values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2734–2753, 2009 相似文献
18.
Sang Kyu Lee Shinuk Cho Minghong Tong Jung Hwa Seo Alan J. Heeger 《Journal of polymer science. Part A, Polymer chemistry》2011,49(8):1821-1829
The optical properties and electrical properties of a series of low‐band‐gap conjugated copolymers, in which alkyl side chains were substituted at various positions, were investigated using donor–acceptor conjugated copolymers consisting of a cyclopentadithiophene derivative and dithienyl‐benzothiadiazole. With substituted side chains, the intrinsic properties of the copolymers were significantly altered by perturbations of the intramolecular charge transfer. The absorption of poly[2, 6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4, 7‐bis(4‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐ttOTBTOT ( P2 )], which assumed a tail–tail configuration, tended to blue shift relative to the absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4,7‐bis (thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐TBTT ( P1 )]. The absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3, 4‐b′]dithiophene)‐alt‐4,7‐bis(3‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐hhOTBTOT ( P3 )], which assumed a head–head configuration, was blue shifted relative to that of P2 . The electrical transport properties of field‐effect transistors were sensitive to the side chain position. The field‐effect mobility in P2 (μ2 = 1.8 × 10?3 cm2/V s) was slightly lower than that in P1 (μ1 = 4.9 × 10?3 cm2/V s). However, the mobility of P3 was very low (μ3 = 3.8 × 10?6 cm2/V s). Photoexcitation spectroscopy showed that the charge generation efficiency (shown in transient absorption spectra) and polaron pair mobility in P1 and P2 were higher than in P3 , yielding P1 and P2 device performances that were better than the performance of devices based on P3 . © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
19.
Surya Subianto Sara Cavaliere Deborah J. Jones Jacques Rozière 《Journal of polymer science. Part A, Polymer chemistry》2013,51(1):118-128
The effect of the side‐chain length (short side chain and long side chain, SSC and LSC, respectively) of perfluorosulfonic acid (PFSA) ionomers on the properties of nanofibers obtained by electrospinning ionomer dispersions in high dielectric constant liquids has been investigated with a view to obtaining electrospun webs as components of fuel cell membranes. Ranges of experimental conditions for electrospinning LSC and SSC PFSAs have been explored, with a scoping of solvents, carrier polymer and PFSA ionomer concentrations, and carrier polymer molecular weight. Under optimal conditions, the electrospun mats derived from SSC and from LSC PFSA show distinct fiber dimensions that arise from the different chain lengths of the respective ionomers. Enhanced interchain interactions in SSC PFSA with low equivalent weight compared to LSC PFSA result in a considerably lower average fiber diameter and a markedly narrower fiber size distribution. The proton conductivity of nanofiber mats of SSC and LSC PFSA with equivalent weights of 830 and 900 g mol?1, respectively, are 102 and 58 mS cm?1 at 80°C and 95% relative humidity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
20.
Coleen Pugh Pukun Zhu Guehyun Kim Joe X. Zheng Michael J. Rubal Stephen Z. D. Cheng 《Journal of polymer science. Part A, Polymer chemistry》2006,44(13):4076-4087
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006 相似文献