首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
1H NMR and SEC analyses are used to investigate the overall efficiency of Copper Catalyzed Azide Alkyne Cycloaddition (CuAAC) “click” coupling reactions between alkyne‐ and azide‐terminated polymers using polystyrene as a model. Quantitative convolution modeling of the entire molecular weight distribution is applied to characterize the outcomes of the functional polymer synthesis reactions (i.e., by atom transfer radical polymerization), as well as the CuAAC coupling reaction. Incomplete functionality of the azide‐terminated polystyrene (∼92%) proves to be the largest factor compromising the efficacy of the CuAAC coupling reaction and is attributed primarily to the loss of terminal bromide functionality during its synthesis. The efficiency of the SN2 reaction converting bromide to azide was found to be about 99%. After taking into account the influence of non‐functional polymer, we find that, under the reaction conditions used, the efficiency of the CuAAC coupling reaction determined from both techniques is about 94%. These inefficiencies compromise the fidelity and potential utility of CuAAC coupling reactions for the synthesis of hierarchically structured polymers. While CuAAC efficiency is expected to depend on the specific reaction conditions used, the framework described for determining reaction efficiency does provide a means for ultimately optimizing the reaction conditions for CuAAC coupling reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 75–84  相似文献   

2.
Three different types of photocrosslinkable groups into a low band‐gap donor–acceptor‐conjugated polymer, namely poly{benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐ thieno[3,4‐b]thiophene} (PBT), were developed to comparatively investigate the effect of the photocrosslinkable groups on the thermal stability of bulk heterojunction solar cells. Compared with vinyl groups, bromine‐ and azide‐ photocrosslinkable groups are more prompt for photocrosslinking to yield a denser crosslinking network, probably due to the different crosslinking mechanisms and reaction rates. In contrast to the reference device decreasing to less than 10% of its initial efficiency value after 80 h of annealing at 150 °C, a great improvement in the thermal stability of performance of all these crosslinked functional copolymers devices demonstrates that photocrosslinking can effectively improve the thermal stability of the active layer by suppressing [6,6]‐phenyl‐C61‐butyric acid methyl diffusion and phase separation. Furthermore, the solar cells with crosslinked bromine‐ and azide‐functionalized PBT polymers showed very thermally stable photovoltaic device performance by retaining 78 and 66% of their initial device efficiency, respectively, whereas vinyl‐functionalized PBT devices retained only 51% of its initial value after long‐time thermal annealing. This suggests that an appropriate crosslinking network with homogenous active morphology could dramatically enhance the device stability without sacrificing the performance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4156–4166  相似文献   

3.
Different gel microstructures are induced at variable poly(vinyl alcohol) (PVA) and Congo red concentrations, as revealed by ultrarapid freezing and a replica technique for transmission electron microscopy. The polymer microstructures observed include random coils, rigid polymer rods, and long fibers. The development of the different polymer conformations is proposed to be dependent on the degree of intramolecular and intermolecular crosslinking and on the electrostatic interactions of the Congo red ions. The rigid‐rod conformation appears to be the most energetically stable form; it is disrupted by electrostatic effects around the polymer overlap concentration (C*PVA). We propose that the gel microstructure influences the physical properties of the gel. Gels possessing the rigid‐rod microstructure have increased Young's storage modulus values. Two possible mechanisms of gelation are suggested. The first describes a one‐stage reaction when the polymer concentration approximates C*PVA, where polymers in an extended random‐coil conformation undergo intermolecular crosslinking without any microstructural changes. The second describes a two‐stage reaction when the polymer concentration is less than or greater than C*, where a disorder–order transition results in the formation of rigid polymer rods and fibers followed by the formation of a macromolecular network. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1471–1483, 2001  相似文献   

4.
A bulk step‐growth polymerization of multifunctional azides and alkynes through the copper (I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction is described. The polymerization kinetics of two systems containing different diynes, bisphenol E diyne (BE‐diyne)/bisphenol A bisazide (BA‐bisazide) and tetraethylene glycol diyne (TeEG‐diyne)/BA‐bisazide, are evaluated by differential scanning calorimetry (DSC), shear rheology, and thermogravimetric analysis. The effects of catalyst concentration on reaction kinetics are investigated in detail, as are the thermal properties (glass transition and decomposition temperatures) of the formed polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4093–4102, 2010  相似文献   

5.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

7.
The click‐coupling reaction was applied to polycondensation, to synthesize a high‐molecular weight prepolymer having benzoxazine moieties in the main chain. For the polycondensation, a bifunctional N‐propargyl benzoxazine was synthesized from bisphenol A, propargylamine, and formaldehyde. The propargyl group was efficiently used for the copper(I)‐catalyzed alkyne‐azide “click” reaction with p‐xylene‐α,α′‐diazide, to give the corresponding linear polycondensate having 1,2,3‐triazole junctions. The polycondensation proceeded in N,N‐dimethylformamide (DMF) at room temperature. By this highly efficient “click‐” polycondensation reaction, the benzoxazine ring in the monomer was successfully introduced into the polymer main chain without any side reaction. The obtained polymer (=prepolymer) underwent thermal crosslinking to afford the corresponding product, which was insoluble in a wide range of organic solvents and exhibited higher thermal stability than the polymer before crosslinking. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2316–2325, 2008  相似文献   

8.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

9.
A biodegradable polymer network hydrogel system with both hydrophilic and hydrophobic components was synthesized and characterized. The hydrophilic and hydrophobic components were dextran and poly(D,L )lactic acid (PDLLA), respectively. These two polymers were chemically modified for incorporating unsaturated groups for subsequent UV crosslinking to generate a hydrogel with a three‐dimensional network structure. The effects of the reaction conditions on the synthesis of a dextran derivative of allyl isocyanate (dex‐AI) were studied. All newly synthesized materials were characterized by Fourier transform infrared and NMR. The swelling property of the hydrogels was studied in buffer solutions of different pHs. The results of this study showed that a wide‐range swelling property was obtained by changes in the dex‐AI/PDLLA composition ratio, the type and degree of unsaturated groups incorporated into dextran, and the UV photocrosslinking time. The solvent extraction effect on the swelling property of the hydrogels was also studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2392–2404, 2000  相似文献   

10.
Second-order, nonlinear optical polymers based on epoxy-substituted methylvinylisocyanates and N-substituted maleimides were synthesized and characterized with spectral and thermal analysis. The photocrosslinking and thermal-crosslinking reactions of copolymers with different chromophore contents were studied. Thermally induced crosslinking during the poling process, performed at the glass-transition temperature (Tg), was prevented by Tg being decreased through the addition of a plasticizer. Electrooptic coefficients (r33), measured for crosslinked and noncrosslinked systems, had similar absolute values and relaxation dynamics. This behavior was explained in terms of the similar rotational mobility of the chromophore units and the paucity of crosslinking sites. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1589–1595, 2001  相似文献   

11.
A methacrylate‐based crosslinking hyperbranced polymers have been synthesized through initiator‐fragment incorporation radical polymerization and used for the temperature stable electro‐optic (EO) polymer application. This polymer consists of methyl methacrylate, 2‐metacryloxyethyl isocyanate, and ethylene glycol dimethacrylate (EGDMA) monomers. The use of EGDMA as a bifunctional unit resulted in the solvent‐soluble crosslinking hyperbranched chain, so that the EO polymer enhanced glass transition temperatures. A phenyl vinylene thiophene vinylene bridge nonlinear optical chromophore was attached to the polymer backbone as the side‐chain by a post‐functionalization reaction. The loading concentration of the chromophore was varied between 30 and 50 wt % by simply changing the mixing ratio of the precursor polymer to the chromophore. The synthesized EO polymers produced optical quality films with a light propagation loss of 0.61 dB/cm in a slab waveguide at 1.31 μm. The electrically poled film had an EO coefficient (r33) of 139 pm/V at 1.31 μm. The EO crosslinking hyperbranced polymer had a high‐glass transition temperature of 170 °C, and exhibited excellent temporal stability of the EO activity at 85 °C for 500 h. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A series of crosslinkable maleimide conjugated polymers with different vinyl group contents as side‐chain crosslinking sites have been synthesized by the Suzuki coupling reaction. Polymer solar cells (PSCs) were fabricated based on an interpenetrating network of the crosslinkable maleimide polymers as the electron donor, and a fullerene derivative, (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM), as the electron acceptor. The crosslinkable maleimide polymers underwent crosslinking reaction at the side‐chain vinyl groups upon the thermal treatment with or without the addition of initiator, azobisisobutyronitrile (AIBN). Better photovoltaic (PV) performances were obtained for the PSCs based on the polymer crosslinking without using initiator, whereas poorer PV performances were observed for the PSCs based on the polymer crosslinking with the AIBN initiator. In addition, higher operational stability was observed for the crosslinked polymer based solar cell as compared to the solar cell based on the un‐crosslinked polymer. The photo‐physical and PV properties of the cross‐linked maleimide polymers/PCBM based PSCs are discussed in detail as the morphology and crosslinking density of the polymers are taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A novel phosphate monomer, Op‐(methacryloyloxymethyl)benzyl O,O‐diethyl phosphate (MDP) was synthesized by the reaction of diethyl phosphorochloridate with 1,4‐benzenedimethanol, followed by the reaction with methacryloyl chloride in the presence of triethylamine. The radical polymerization of MDP and copolymerization with methyl methacrylate were carried out in the presence of 2,2′‐azobisisobutyronitrile (3 mol %) in dimethylacetamide at 60 °C for 20 h to afford phosphate‐pendant polymers. The polymerization of glycidyl phenyl ether (GPE) was carried out with the phosphate‐pendant polymer as an initiator in the presence of ZnCl2. The polymerization did not proceed below 90 °C but rapidly proceeded above 90 °C to afford polyGPE. The phosphate‐pendant polymer served as a good thermally latent polymeric initiator. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3365–3370, 2001  相似文献   

14.
Chemical crosslinkers are commonly used to stabilize both natural and synthetic macromolecules, while providing opportunities to install functionality and modulate polymer architecture. Here, we introduce the aromatic cyclopropenium cation as a tri-functional crosslinker of secondary amine-containing polymers. The one-step crosslinking reaction is rapid and requires no subsequent purification. When dispersed in aqueous media, the crosslinked polymers form spherical nanoparticles with highly positive charge that is maintained even in alkaline conditions. This synthetic strategy will enable the incorporation of cyclopropenium into a wide variety of macromolecules. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2641–2645  相似文献   

15.
New aromatic ring‐layered polymers consisting of carbazole as a layered aromatic group and xanthene as a scaffold were designed and synthesized via the Sonogashira–Hagihara coupling reaction. Their optical and electrochemical behaviors were investigated in detail; the results showed that these polymers could be used as hole‐transporting materials. Polymers with nitrobenzene moieties at the polymer chain ends quenched the emission from the layered carbazoles to the nitrobenzene termini; thus, the polymers acted as the molecular wire that transferred photoexcited energy and/or electrons to the polymer termini. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4279–4288, 2009  相似文献   

16.
Our previous mechanistic discussion of network formation in chainwise crosslinking multiallyl polymerization was extended to stepwise crosslinking diepoxide/diamine polymerization, typically including bisphenol‐A diglycidyl ether (BADGE) and 4,4′‐diaminodiphenylmethane (DDM). In allyl polymerization a monomer chain transfer is an essential termination reaction, providing only oligomeric primary polymer chains. Therefore, crosslinking multiallyl polymerization could be in the category of a classical gelation theory. Thus, the gelation behavior was discussed by comparing the actual gel point with the theoretical one. Then the resulting network polymer precursors (NPPs) were characterized by size‐exclusion chromatography‐multiangle laser light scattering‐viscometry to clarify the stepwise crosslinking BADGE/DDM polymerization mechanism. Notably, the intrinsic viscosity ratio [η]NPP/[η]Linear tended to decrease with the progress of crosslinking and finally, it reached less than 0.2. This suggests that the structure of resulting NPP becomes dendritic at a conversion close to the gel point. These dendritic NPPs can collide with each other to form crosslinks between NPPs, eventually leading to gelation as a reflection of the high concentration of NPP. The dilution effect on gelation was marked in polar solvent; no gelation was observed at a dilution of 1/5. However, in nonpolar solvent the gelation was promoted by dilution; this is ascribed to enhanced crosslink formation between NPPs through hydrogen bonding due to abundant hydroxyl groups in the NPP generated by the polyaddition reaction. Finally, the subject of “Is cured epoxy resin inhomogeneous?” is briefly discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The crosslinking performance of the unsaturated hyperbranched polyester poly(allyloxy maleic acid‐co‐maleic anhydride) (MAHP) was investigated with copolymerizations of three different monomers: styrene, vinyl acetate, and methyl methacrylate. Both styrene and vinyl acetate afforded interpenetrating‐polymer‐network copolymer gels. The gels exhibited crosslink density gradients through the polymer matrices on a macroscopic level, and density maximums were concentrated around the MAHP moieties. The heterogeneity of the gels is briefly discussed in terms of a modified two‐phase model, where one phase consists of an elastic part of low crosslinking density and the other phase consists of an inelastic dendritic part with a highly condensed bond density. Unlike the two‐phase model developed by Choquet and Rietsch, the modified two‐phase model takes into account that both phases swell in good solvents. Unlike copolymerizations employing styrene or vinyl acetate, the copolymerization of MAHP with methyl methacrylate afforded noncrosslinked starbranched copolymers that consisted of a MAHP core from which long poly(methyl methacrylate) branches were protruding. The different behaviors of the copolymerizations of the three monomers used in this study can rationally be explained by their different reactivity ratios with maleic end groups of MAHP. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 964–972, 2001  相似文献   

18.
To predict long‐term polymer behavior during a nuclear waste storage time, radiation effects on a segmented aromatic poly(ether‐urethane) induced by high‐energy radiation under oxygen atmosphere were investigated. To obtain a predictive model of polymer radio‐oxidation during several centuries, the first step consists to elaborate the elementary degradation mechanisms. Thus, electron paramagnetic resonance (EPR), Fourier transform infra‐red spectroscopy (FT‐IR), electrospray ionisation‐mass spectrometry (ESI‐MS), and gas mass spectrometry were carried out to identify radicals, chemical modifications, and gases to reach the radio‐oxidative mechanism at doses inferior than 1000 kGy. Degradation mainly occurs at urethane bonds and in polyether soft segments that produces stable oxidative products as formates, alcohols, carboxylic acids and H2, CO2 and CO gases. Predominant degradation occurred at polyether soft segments and crosslinking is in competition with scission. On the basis of the results, a mechanism of degradation for aromatic poly(ether‐urethane) is proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 861–878, 2008  相似文献   

19.
This study describes a novel and facile synthesis strategy for a styrene‐butadiene rubber (SBR)‐like polymer via Friedel–Crafts‐type reaction between aromatic compounds and polybutadiene using an aluminum chloride as a catalyst. Although gelation was induced by a reaction of a generated carbocation with olefins in other polybutadiene chains in benzene and toluene because of their low electron densities on their rings, anisole with a higher electron density reacted with the polybutadiene carbocation efficiently. The introduction ratio of anisole increased as the reaction proceeded, and the obtained polymer, BRAN polymer, contained 15% anisoles for olefins in the polybutadiene in 4 h at 80 °C as estimated by 1H NMR analysis. The glass‐transition temperature (Tg) of the BRAN polymer also increased with anisole content (Tg ~?50 °C when anisole contents 20%). The vulcanizate containing the BRAN polymer showed higher mechanical properties compared to samples using other matrix polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 841–847  相似文献   

20.
Postfunctionalization of high‐molecular‐weight syndiotactic polystyrene (sPS) was achieved via combination of electrophilic bromination at the para‐position of the polymer aromatic ring and subsequent Suzuki–Miyaura cross‐coupling reactions with functionalized phenylboronic acids. The concentration of brominated styrene repeating unit in sPS was conveniently controlled by changing the ratio of added bromine relative to the polymer repeating unit. Brominated sPS (8.5 mol %) was converted quantitatively to other polar functional groups via Suzuki–Miyaura cross‐coupling reactions with various functional group‐substituted phenylboronic acids. The surface properties of functionalized sPS were studied by measuring water contact angles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4335–4343, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号