首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The dynamics of two nematic liquid crystals, 4-(trans-4(')-n-octylcyclohexyl)isothiocyanatobenzene and 4-(4-pentyl-cyclohexyl)-benzonitrile, are investigated as a function of temperature both in the homeotropically aligned nematic phase and in the isotropic phase using optical heterodyne-detected optical Kerr effect experiments, which measures the time derivative of the polarizability-polarizability-correlation function (orientational relaxation). Data are presented over a time range of 500 fs-70 micros for the nematic phase and 500 fs to a few hundred nanoseconds for the isotropic phase. The nematic dynamics are compared with a previously studied liquid crystal in the nematic phase. All three liquid crystals have very similar dynamics in the nematic phase that are very different from the isotropic phase. On the slowest time scale (20 ns-70 micros), a temperature-independent power law, the final power law, t(-f) with f approximately 0.5, is observed. On short time scales (approximately 3 ps to approximately 1 ns), a temperature-dependent intermediate power law is observed with an exponent that displays a linear dependence on the nematic order parameter. Between the intermediate power law and the final power law, there is a crossover region that has an inflection point. For times that are short compared to the intermediate power law (approximately <2 ps), the data decay much faster, and can be described as a third power law, although this functional form is not definitive. The isotopic phase data have the same features as found in previous studies of nematogens in the isotropic phase, i.e., the temperature-independent intermediate power law and von Schweidler power law at short to intermediate times, and a highly temperature-dependent long time exponential decay that is well described by the Landau-de Gennes theory. The results show that liquid-crystal dynamics in the nematic phase exhibit universal behavior.  相似文献   

2.
Optically heterodyne-detected optical Kerr effect experiments are applied to study the orientational dynamics of the supercooled ionic organic liquids N-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (PMPIm) and 1-ethyl-3-methylimidazolium tosylate (EMImTOS). The orientational dynamics are complex with relaxation involving several power law decays followed by a final exponential decay. A mode coupling theory (MCT) schematic model, the Sj?gren model, was able to reproduce the PMPIm data very successfully over a wide range of times from 1 ps to hundreds of ns for all temperatures studied. Over the temperature range from room temperature down to the critical temperature Tc of 231 K, the OHD-OKE signal of PMPIm is characterized by the intermediate power law t(-1.00+/-0.04) at short times, a von Schweidler power law t(-0.51+/-0.03) at intermediate times, and a highly temperature-dependent exponential (alpha relaxation) at long times. This form of the decay is identical to the form observed previously for a large number of organic van der Waals liquids. MCT analysis indicates that the theory can explain the experimental data very well for a range of temperatures above Tc, but as might be expected, there are some deviations from the theoretical modeling at temperatures close to Tc. For EMImTOS, the orientational dynamics were studied on the ps time scale in the deeply supercooled region near its glass transition temperature. The orientational relaxation of EMImTOS clearly displays the feature associated with the boson peak at approximately 2 ps, which is the first time domain evidence of the boson peak in ionic organic liquids. Overall, all the dynamical features observed earlier for organic van der Waals liquids using the same experimental technique are also observed for organic ionic liquids.  相似文献   

3.
Relaxation in the nematic liquid crystalline phase is known to be sensitive to its proximity to both isotropic and smectic phases. Recent transient optical Kerr effect (OKE) studies have revealed, rather surprisingly, two temporal power laws at short to intermediate times and also an apparent absence of the expected exponential decay at longer times. In order to understand this unusual dynamics, we have carried out extensive molecular dynamics simulations of transient OKE and related orientational time correlation functions in a system of prolate ellipsoids (with aspect ratio equal to 3). The simulations find two distinct power laws, with a crossover region, in the decay of the orientational time correlation function at short to intermediate times (in the range of a few picoseconds to a few nanoseconds). In addition, the simulation results fail to recover any long time exponential decay component. The system size dependence of the exponents suggests that the first power law may originate from the local orientational density fluctuations (like in a glassy liquid). The origin of the second power law is less clear and may be related to the long range fluctuations (such as smecticlike density fluctuations)--these fluctuations are expected to involve small free energy barriers. In support of the latter, the evidence of pronounced coupling between orientational and spatial densities at intermediate wave numbers is presented. This coupling is usually small in normal isotropic liquids, but it is large in the present case. In addition to slow collective orientational relaxation, the single particle orientational relaxation is also found to exhibit slow dynamics in the nematic phase in the long time.  相似文献   

4.
Recent optical Kerr effect experiments have revealed a power law decay of the measured signal with a temperature independent exponent at short-to-intermediate times for a number of liquid crystals in the isotropic phase near the isotropic-nematic transition and supercooled molecular liquids above the mode coupling theory critical temperature. In this work, the authors investigate the temperature dependence of short-to-intermediate time orientational relaxation in a model thermotropic liquid crystal across the isotropic-nematic transition and in a binary mixture across the supercooled liquid regime in molecular dynamics simulations. The measure of the experimentally observable optical Kerr effect signal is found to follow a power law decay at short-to-intermediate times for both systems in agreement with recent experiments. In addition, the temperature dependence of the power law exponent is found to be rather weak. As the model liquid crystalline system settles into the nematic phase upon cooling, the decay of the single-particle second-rank orientational time correlation function exhibits a pattern that is similar to what has been observed for supercooled liquids.  相似文献   

5.
《Chemical physics letters》2002,350(1-2):82-87
Optical heterodyne detected optical Kerr effect (OHD-OKE) experiments are used to study the orientational dynamics of the liquid crystal 4-octyl-4-biphenylcarbonitrile (8CB) in the isotropic phase near the isotropic to nematic phase transition. The results are compared to those for three other liquid crystals. The 8CB data display a short time scale temperature independent power law decay and a long time scale exponential decay with a temperature dependence described by Landau–de Gennes theory. The power law exponent is −0.56. Combining this result with previous results for three other liquid crystals [J. Chem. Phys. 116 (2002) 6339; J. Chem. Phys. 116 (2002) 360], it is found that the power law exponent depends linearly on the aspect ratio of the liquid crystal.  相似文献   

6.
We report a molecular dynamics simulation study on the isotropic phase of an idealized calamitic liquid crystal model with a length-to-width ratio of approximately 5-6. The study focuses on the characterization of single-particle and collective orientational dynamics on approaching the phase transition to the nematic phase. Recent experimental and simulation works have suggested that a power law behavior exists at relatively short times in the decay of the time derivative of the orientational correlation functions. Qualitatively, our simulation data are consistent with these findings. Both single-particle and collective time correlation function derivatives possess, in their respective log-log plots, a linear region at very short times, whose slope is essentially independent from the thermodynamic state. Nevertheless, the single-particle orientational correlation functions are better described by a function which is the sum of a fast exponential, an intermediate stretched-exponential and a slow exponential, while the collective orientational correlation functions are satisfactorily described by a sum of two exponentials, at higher density, or by just one exponential, at lower density.  相似文献   

7.
The orientational dynamics of thermotropic liquid crystals across the isotropic-nematic phase transition have traditionally been investigated at long times or low frequencies using frequency domain measurements. The situation has now changed significantly with the recent report of a series of interesting transient optical Kerr effect (OKE) experiments that probed orientational relaxation of a number of calamitic liquid crystals (which consist of rod-like molecules) directly in the time domain, over a wide time window ranging from subpicoseconds to tens of microseconds. The most intriguing revelation is that the decay of the OKE signal at short to intermediate times (from a few tens of picoseconds to several hundred nanoseconds) follows multiple temporal power laws. Another remarkable feature that has emerged from these OKE measurements is the similarity in the orientational relaxation behavior between the isotropic phase of calamitic liquid crystals near the isotropic-nematic transition and supercooled molecular liquids, notwithstanding their largely different macroscopic states. In this article, we present an overview of the understanding that has emerged from recent computational and theoretical studies of calamitic liquid crystals across the isotropic-nematic transition. Topics discussed include (a) single-particle as well as collective orientational dynamics at a short-to-intermediate time window, (b) heterogeneous dynamics in orientational degrees of freedom diagnosed by a non-Gaussian parameter, (c) fragility, and (d) temperature-dependent exploration of underlying energy landscapes as calamitic liquid crystals settle into increasingly ordered mesophases upon cooling from the high-temperature isotropic phase. A comparison of our results with those of supercooled molecular liquids reveals an array of analogous features in these two important classes of soft matter systems. We further find that the onset of growth of the orientational order in the parent nematic phase induces translational order, resulting in smectic-like layers in the potential energy minima of calamitic systems if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. We discuss implications of this startling observation. We also discuss recent results on the orientational dynamics of discotic liquid crystals that are found to be rather similar to those of calamitic liquid crystals.  相似文献   

8.
Optical heterodyne-detected optical Kerr effect (OHD-OKE) experimental data are pre-sented on nematogens 4-(trans-4-n-octylcyclohexyl)isothiocyanatobenzene (8-CHBT), and 4-(4-pentyl-cyclohexyl)-benzonitrile (5-PCH) in the isotropic phase. The 8-CHBT and 5-PCH data and previously published data on 4-pentyl-4-biphenylcarbonitrile (5-CB) are analyzed using a modification of a schematic mode coupling theory (MCT) that has been successful in describing the dynamics of supercooled liquids. At long time, the OHD-OKE data (orientational relaxation) are well described with the standard Landau-de Gennes (LdG) theory. The data decay as a single exponential. The decay time diverges as the isotropic to nematic phase transition is approached from above. Previously there has been no theory that can describe the complex dynamics that occur at times short compared to the LdG exponential decay. Earlier, it has been noted that the short-time nematogen dynamics, which consist of several power laws, have a functional form identical to that observed for the short time behavior of the orientational relaxation of supercooled liquids. The temperature-dependent orientational dynamics of supercooled liquids have recently been successfully described using a schematic mode coupling theory. The schematic MCT theory that fits the supercooled liquid data does not reproduce the nematogen data within experimental error. The similarities of the nematogen data to the supercooled liquid data are the motivation for applying a modification of the successful MCT theory to nematogen dynamics in the isotropic phase. The results presented below show that the new schematic MCT theory does an excellent job of reproducing the nematogen isotropic phase OHD-OKE data on all time scales and at all temperatures.  相似文献   

9.
The isotropic phase dynamics of a system of 4-n-hexyl-4'-cyano-biphenyl (6CB) molecules has been studied by molecular dynamics computer simulations. We have explored the range of 275-330 K keeping the system isotropic, although supercooled under its nematic transition temperature. The weak rototranslational coupling allowed us to separately evaluate translational (TDOF) and orientational degrees of freedom (ODOF). Evidences of subdiffusive dynamics, more apparent at the lowest temperatures, are found in translational and orientational dynamics. Mean square displacement as well as self-intermediate center of mass and rotational scattering functions show a plateau, also visible in the orientational correlation function. According to the mode coupling theory (MCT), this plateau is the signature of the beta-relaxation regime. Three-time intermediate scattering functions reveal that the plateau is related to a homogeneous dynamics, more extended in time for the orientational degrees of freedom (up to 1 ns). The time-temperature superposition principle and the factorization property predicted by the idealized version of MCT hold, again for both kinds of dynamics. The temperature dependence of diffusion coefficient and orientational relaxation time is well described by a power law. Critical temperatures Tc are 244+/-6 and 258+/-6 K, respectively, the latter is some 10 K below the corresponding experimental values. The different values of Tc we obtained indicate that ODOF freezes earlier than TDOF. This appears due to the strongly anisotropic environment that surrounds a 6CB molecule, even in the isotropic phase. The lifetime of these "cages," estimated by time dependent conditional probability functions, is strongly temperature dependent, ranging from some hundreds of picoseconds at 320 K to a few nanoseconds at 275 K.  相似文献   

10.
Recent Kerr relaxation experiments by Gottke et al. have revealed the existence of a pronounced temporal power law decay in the orientational relaxation near the isotropic-nematic phase transition (INPT) of nematogens of rather small aspect ratio, kappa (kappa approximately 3-4). We have carried out very long (50 ns) molecular dynamics simulations of model (Gay-Berne) prolate ellipsoids with aspect ratio 3 in order to investigate the origin of this power law. The model chosen is known to undergo an isotropic to nematic phase transition for a range of density and temperature. The distance dependence of the calculated angular pair correlation function correctly shows the emergence of a long range correlation as the INPT is approached along the density axis. In the vicinity of INPT, the single particle second rank orientational time correlation function exhibits power law decay, (t(-alpha)) with exponent alpha approximately 2/3. More importantly, we find the sudden appearance of a pronounced power-law decay in the collective part of the second rank orientational time correlation function at short times when the density is very close to the transition density. The power law has an exponent close to unity, that is, the correlation function decays almost linearly with time. At long times, the decay is exponential-like, as predicted by Landau-de Gennes mean field theory. Since Kerr relaxation experiments measure the time derivative of the collective second rank orientational pair correlation function, the simulations recover the near independence of the signal on time observed in experiments. In order to capture the microscopic essence of the dynamics of pseudonematic domains inside the isotropic phase, we introduce and calculate a dynamic orientational pair correlation function (DOPCF) obtained from the coefficients in the expansion of the distinct part of orientational van Hove time correlation function in terms of spherical harmonics. The DOPCF exhibits power law relaxation when the pair separation length is below certain critical length. The orientational relaxation of a local director, defined in terms of the sum of unit vectors of all the ellipsoidal molecules, is also found to show slow power law relaxation over a long time scale. These results have been interpreted in terms of a newly developed mode coupling theory of orientational dynamics near the INPT. In the present case, the difference between the single particle and the collective orientational relaxation is huge which can be explained by the frequency dependence of the memory kernel, calculated from the mode coupling theory. The relationship of this power law with the one observed in a supercooled liquid near its glass transition temperature is explored.  相似文献   

11.
Optically heterodyne-detected optical Kerr effect (OHD-OKE) experiments are conducted to study the orientational dynamics of a discotic liquid crystal 2,3,6,7,10,11-hexakis(pentyloxy)triphenylene (HPT) in the isotropic phase near the columnar-isotropic (C-I) phase transition. The OHD-OKE signal of HPT is characterized by an intermediate power law t(-0.76+/-0.02) at short times (a few picoseconds), a von Schweidler power law t(-0.26+/-0.01) at intermediate times (hundreds of picoseconds), and an exponential decay at long times (tens of nanoseconds). The exponential decay has Arrhenius temperature dependence. The functional form of the total time dependent decay is identical to the one observed previously for a large number of molecular supercooled liquids. The mode coupling theory schematic model based on the Sjogren [Phys. Rev. A 33, 1254 (1986)] model is able to reproduce the HPT data over a wide range of times from <1 ps to tens of nanoseconds. The studies indicate that the HPT C-I phase transition is a strong first order transition, and the dynamics in the isotropic phase display a complex time dependent profile that is common to other molecular liquids that lack mesoscopic structure.  相似文献   

12.
Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.  相似文献   

13.
Orientational correlations in Langmuir monolayers of nematic and smectic-C liquid crystal (LC) phases are investigated by molecular dynamics simulation. In both phases, the orientational correlation functions decay algebraically yet with the different exponents of 1.9 and 0.2 for the nematic and the smectic-C monolayers, respectively. The power law decay, i.e., the absence of long-range orientational order, means the both monolayers should be the ideal 2D system with a continuous symmetry, whereas the large difference in the exponents of power law gives rise to the crucial difference in their optical properties; the nematic monolayer is optically isotropic while the smectic-C monolayer exhibits an anisotropy on the length scale of visible light. Since the exponent is inversely proportional to the molecular exchange energy, the averaged molecular interaction in the nematic monolayer should be an order of magnitude smaller than that in the smectic-C monolayer, which is ascribed to the low molecular density and the weak molecular dipole due to the water molecule. The relation between the molecular interaction and the orientational correlation calculated for the 2D LC system offers much information not only about the 2D LCs but also on the bulk system.  相似文献   

14.
Thermodynamic, structural and dynamical properties of a new type of discotic compounds, a hydrocarbon without any heteroatoms, displaying a nematic discotic phase have been investigated by means of X-ray diffraction, electro-optical relaxation, and calorimetric studies. Of particular interest are the strength of the first order nematic—isotropic phase transition and the nature of the orientational fluctuations in the isotropic phase. The short range positional order was found to be biaxial in both the isotropic and the nematic phase. The isotropic phase displays strong pretransitional effects originating from orientational fluctuations in the neighbourhood of the transition to the nematic phase. The character of these pretransitional effects differs from that found for calamitic systems in that the number of correlated molecules g2 is extremely large, of the order of 600 at the clearing temperature and the electro-optical relaxation time is very large, caused by the large value of g2.  相似文献   

15.
The ultrafast dynamics of the isotropic phase of a liquid crystal 4'-pentyl-4-p-biphenylcarbonitrile (5CB) have been investigated using polarization resolved optical Kerr effect spectroscopy. Measurements were made as a function of both temperature and dilution in nonpolar solvents. To separate single molecule and interaction induced components to the relaxation of the induced birefringence, measurements of both the anisotropic and isotropic response were made. The isotropic response was found to be dominated by a damped low-frequency mode of intramolecular origin. There is a minor additional component assigned to an interaction induced contribution. There is at most an extremely weak isotropic signal beyond 1 ps, showing that the picosecond time scale dynamics of 5CB are dominated by orientational relaxation. The isotropic response is independent of temperature in the range studied (0.2-50 K above the nematic to isotropic phase-transition temperature). The anisotropic response exhibits relaxation dynamics on time scales spanning subpicosecond to several hundred picoseconds and beyond. The fastest components are dominated by a librational response, but there are smaller contributions from three low-frequency intramolecular modes, and a contribution from interaction induced effects. The low-frequency spectral density extracted from these data are independent of temperature in the range studied, 0.2-30 K above the phase-transition temperature, but shift to lower frequency on dilution in alkane solvents. In neat 5CB the picosecond time scale orientational dynamics are dominated by temperature-independent reorientation within the pseudonematic domains, while in solution these are disrupted, and the orientational response becomes faster and temperature dependent.  相似文献   

16.
We present a study of a water-in-oil microemulsion in which surfactant coated water nanodroplets are dispersed in the isotropic phase of the thermotropic liquid-crystal penthyl-cyanobiphenyl (5CB). As the temperature is lowered below the isotropic to nematic phase transition of pure 5CB, the system displays a demixing transition leading to a coexistence of a droplet-rich isotropic phase with a droplet-poor nematic. The transition is anticipated, in the high T side, by increasing pretransitional fluctuations in 5CB molecular orientation and in the nanodroplet concentration. The observed phase behavior supports the notion that the nanosized droplets, while large enough for their statistical behavior to be probed via light scattering, are also small enough to act as impurities, disturbing the local orientational ordering of the liquid crystal and thus experiencing pretransitional attractive interaction mediated by paranematic fluctuations. The pretransitional behavior, together with the topology of the phase diagram, can be understood on the basis of a diluted Lebwohl-Lasher model which describes the nanodroplets simply as holes in the liquid crystal.  相似文献   

17.
The phase behavior of lyotropic rigid-chain liquid crystal polymer was studied by dissipative particle dynamics (DPD) with variations of the solution concentration and temperature. A chain of fused DPD particles was used to represent each mesogenic polymer backbone surrounded with the strongly interacted solvent molecules. The free solvent molecules were modeled as independent DPD particles, where each particle includes a lump of solvent molecules with the volume roughly equal to the solvated polymer segment. The simulation shows that smectic-B (S(B)), smectic-A (S(A)), nematic (N), and isotropic (I) phases exist within certain regions in the temperature and concentration parameter space. The temperature-dependent S(B)∕S(A), S(A)∕N, and N∕I phase transitions occur in the high concentration range. In the intermediate concentration range, the simulation shows coexistence of the anisotropic phases and isotropic phase, where the anisotropic phases can be the S(B), S(A), or N phases. Mole fraction and compositions of the coexisted phases are determined from the simulation, which indicates that concentration of rigid rods in isotropic phase increases as the temperature increases. By fitting the orientational distribution function of the systems, the biphasic coexistence is further confirmed. From the parameter α obtained for the simulation, the distribution of the rigid rods in the two coexistence phases is quantitatively evaluated. By using model and simulation methods developed in this work, the phase diagrams of the lyotropic rigid-chain polymer liquid crystal are obtained. Incorporating the solvent particles in the DPD simulation is critical to predict the phase coexistence and obtain the phase diagrams.  相似文献   

18.
The ultrafast dynamics of liquid sulphur dioxide have been studied over a wide temperature range and in solution. The optically heterodyne-detected and spatially masked optical Kerr effect (OKE) has been used to record the anisotropic and isotropic third-order responses, respectively. Analysis of the anisotropic response reveals two components, an ultrafast nonexponential relaxation and a slower exponential relaxation. The slower component is well described by the Stokes-Einstein-Debye equation for diffusive orientational relaxation. The simple form of the temperature dependence and the agreement between collective (OKE) and single molecule (e.g., NMR) measurements of the orientational relaxation time suggests that orientational pair correlation is not significant in this liquid. The relative contributions of intermolecular interaction-induced and single-molecule orientational dynamics to the ultrafast part of the spectral density are discussed. Single-molecule librational-orientational dynamics appear to dominate the ultrafast OKE response of liquid SO2. The temperature-dependent OKE data are transformed to the frequency domain to yield the Raman spectral density for the low-frequency intermolecular modes. These are bimodal with the lowest-frequency component arising from diffusive orientational relaxation and a higher-frequency component connected with the ultrafast time-domain response. This component is characterized by a shift to higher frequency at lower temperature. This result is analyzed in terms of a harmonic librational oscillator model, which describes the data accurately. The observed spectral shifts with temperature are ascribed to increasing intermolecular interactions with increasing liquid density. Overall, the dynamics of liquid SO2 are found to be well described in terms of molecular orientational relaxation which is controlled over every relevant time range by intermolecular interactions.  相似文献   

19.
Recent optical Kerr effect experiments have shown that orientational relaxation of nematogens shows a pronounced slow down of the response function at intermediate times and also a power law decay near the isotropic-nematic (I-N) transition. In many aspects, this behavior appears to be rather similar to the ones observed in the supercooled liquid near-glass transition. We have performed molecular dynamics simulations of model nematogens (Gay-Berne with aspect ratio 3) to explore the viscoelasticity near the I-N transition and also investigated the correlation of viscoelasticity (if any) with orientational relaxation. It is found that although the viscosity indeed undergoes a somewhat sharper than normal change near the I-N transition, it is not characterized by any divergence-like behavior (like the ones observed in the supercooled liquid). The rotational friction, on the other hand, shows a much sharper rise as the I-N transition is approached. Interestingly, the probability distribution of the amplitude of the three components of the stress tensor shows anisotropy near the I-N transition-similar anisotropy has also been seen in the deeply supercooled liquid. Frequency dependence of viscosity shows several unusual behaviors: (a) There is a weak, power law dependence on frequency [eta(')(omega) approximately omega(-alpha)] at low frequencies and (b) there is a rapid increase in the sharp peak observed in eta(')(omega) in the intermediate frequency on approach to the I-N transition density. These features can be explained from the stress-stress time correlation function. The angular velocity correlation function also exhibits a power law decay in time. The reason for this is discussed.  相似文献   

20.
Contribution to understanding of the molecular dynamics in liquids   总被引:1,自引:0,他引:1  
The dielectric relaxation spectroscopy is used for studying the orientational molecular dynamics in the isotropic (I) and nematic (N) phases of two mesogenic liquids composed of the molecules of similar structure and length, but of an essentially different polarity: n-heptylcyanobiphenyl, C(7)H(15)PhPhCN, 7CB (molecular dipole moment mu approximately 5D) and 4-(trans-4'-n-hexylcyclohexyl)isothiocyanatobenzene, C(6)H(13)CyHxPhNCS, 6CHBT (mu approximately 2.5D); advantageously, the temperatures of the I-N phase transition for the two compounds are very close to each other (T(NI) = 316.6 +/- 0.2 K). It is shown that regardless of the differences in polarity of 7CB and 6CHBT molecules and their abilities in dipolar aggregation, the values and temperature dependences of the relaxation time (corresponding to the rotational diffusion of the molecules around their short axis) are very close to each other, in both the isotropic and nematic phases of the liquids studied. Therefore, the data show that the dielectric relaxation processes occurring in dipolar liquids in the isotropic and nematic states lead through the rotational diffusion of individual molecules and the diffusion seems to be not influenced by the intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号