首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Small SiC nanoparticles (10 nm diameter) have been grown in a flow reactor by CO2 laser pyrolysis from a C2H2 and SiH4 mixture. The laser radiation is strongly absorbed by SiH4 vibration. The energy is transferred to the reactive medium and leads to the dissociation of molecules and the subsequent growth of the nanoparticles. The reaction happens with a flame. The purpose of the experiments reported in this paper is to limit the size of the growing particles to the nanometric scale for which specific properties are expected to appear. Therefore the effects of experimental parameters on the structure and chemical composition of nanoparticles have been investigated. For a given reactive mixture and gas velocity, the flame temperature is governed by the laser power. In this study, the temperature was varied from 875°C to 1100°C. The chemical analysis of the products indicate that their composition is a function of the temperature. For the same C/Si atomic ratio in the gaseous phase, the C/Si ratio in the powder increases from 0.7 at 875°C up to 1.02 at 1100°C, indicating a growth mechanism limited by C2H2 dissociation. As expected, X-ray diffraction has shown an improved crystallisation with increasing temperature. Transmission electron microscopy observations have revealed the formation of 10 nm grains for all values of laser power (or flame temperature). These grains appear amorphous at low temperature, whereas they contain an increasing number of nanocrystals (2 nm diameter) when the temperature increases. These results pave the way to a better control of the structure and chemical composition of laser synthesised SiC nanoparticles in the 10 nm range.  相似文献   

2.
Absorption spectra of the gases SiH4, NH3, C2H2 and of SiH4/Ar and SiH4/B2H6 mixtures have been measured in the spectral range of the CO2 laser from 9.2 to 10.8 µm. In agreement with literature, silane shows the highest absorption (absorption coefficient = 3.3 × 10–2 Pa–1 m–1). The deviation of the measured absorption behaviour of silane from literature, as far as the pressure dependence is concerned, can be explained by the enhanced spectral energy density in our experiment. This is confirmed by a rate-equation model involving the basic mechanisms of V-V and V-T energy transfer between vibrationally excited silane molecules. In contrast to silane, the absorption coefficient of NH3 at the 10P(20) laser line is 4.5 × 10–4 Pa–1 m–1 atp = 20 kPa and has its maximum of 4.5 × 10–3 Pa–1 m–1 at the 10R(6) laser line. For C2H2 and B2H6, is even less ( 2.1 Ò 10–5 Pa–1 m–1 for C2H2).  相似文献   

3.
TEM, THEED and field-assisted silver ion exchange have been employed to study the glow discharge (GD) SiHCl films deposited from SiH4-SiCl4 gas mixtures. The character of the THEED patterns shows that the films are rather amorphous, and that their structure does not alter with the change in the gas mixture. The honeycomb-like morphology of the films is strongly affected by the type of gas in which SiH4 is diluted (Ar or H2). An increase in the SiCl4 partial pressure leads to the uniformity and to the decrease of the island dimension only for the films deposited from SiH4(H2)-SiCl4. A possible correlation between the film morphology and the micropore density is proposed.  相似文献   

4.
Structures of several premixed ethylene-oxygen-argon rich flat flames burning at 50 mbar have been established by using molecular beam mass spectrometry in order to investigate the effect of CO2, or NH3, or H2O addition on species concentration profiles. The aim of this study is to examine the eventual changes of profiles of detected hydrocarbon intermediates which could be considered as soot precursors (C2H2, C4H2, C5H4, C5H6, C6H2, C6H4, C6H6, C7H8, C6H6O, C8H6, C8H8, C9H8 and C10H8). The comparative study has been achieved on four flames with an equivalence ratio (f) of 2.50: one without any additive (F2.50), one with 15% of CO2 replacing the same quantity of argon (F2.50C), one with 3.3% of NH3 in partial replacement of argon (F2.50N) and one with 13% of H2O in replacement of the same quantity of argon (F2.50H). The four flat flames have similar final flame temperatures (1800 K).CO2, or NH3, or H2O addition to the fresh gas inlet causes a shift downstream of the flame front and thus flame inhibition. Endothermic processes CO2 + H = CO + OH and H2O + H = H2 + OH are responsible of the reduction of the hydrocarbon intermediates in the CO2 and H2O added flames through the supplementary formation of hydroxyl radicals. It has been demonstrated that such processes begin to play at the end of the flame front and becomes more efficient in the burnt gases region.The replacement of some Ar by NH3 is responsible only for a slight decrease of the maximum mole fraction of C2H2, but NH3 becomes much more efficient for C4H2 and C5 to C10 species. Moreover, the efficiency of NH3 as a reducing agent of C5 to C10 intermediates is larger than that of CO2 and H2O for equal quantities added.  相似文献   

5.
Conductivity of photo-CVD microcrystalline silicon (c-Si:H) in wide range of dopant gas concentration (10–53/SiH4, B2H6/SiH4<10–2) is investigated. As compared with a-Si:H, the conductivity of the film is improved more than two orders of magnitude by microcrystallization for a wide range of dopant concentration at a deposition temperature of as low as 150°C. This indicates the suitability of photo-CVD for low temperature processing. A conductivity minimum is found at a doping ratio of about B2H6/SiH4=1×10–5.  相似文献   

6.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

7.
The dependence of a-SiH film deposition by laser-induced decomposition of SiH4 on the different process variables is studied. The gas phase temperature in the beam center, produced by CO2 laser irradiation in parallel configuration, is estimated using a simple energy balance model. The surface temperature is measured with high accuracy employing a Ni sensor (250°–400 °C). The deposition rate and film properties such as the hydrogen content and the optical energy gap are determined as a function of these parameters. The production of H2 (10%), Si2H6 (2%), and Si3H8 in the gas phase during laser irradiation is proved by a mass spectrometric analysis. The chemical reaction processes induced in the gas phase and at the surface are discussed. A mechanism explaining the main features of the complicated chemistry involved is developed.  相似文献   

8.
A single-pulse spontaneous Raman scattering apparatus, based on a flashlamp-pumped dye laser, was used to determine the concentrations of the major species and the temperature in turbulent H2/N2/air jet diffusion flames. The concentrations of nitric oxide were simultaneously measured by Laser-Induced Fluorescence (LIF) after excitation of theA 2 +X 2 transition with a Nd: YAG-pumped dye laser. Some fundamentals of the employed methods, including the calibration procedure, quenching corrections, and accuracy are discussed. Besides a detailed study of the experimental technique, a main goal of the presented investigations was the generation of comprehensive data sets of high accuracy from well-defined turbulent flames which allow for a quantitative comparison with model calculations. Two flames with different fuel dilution and Reynolds numbers were investigated in a pattern of typically 100 measuring locations each comprising 300 single shots. In addition, four flames with different flow velocities but same fuel composition were compared with respect to their temperature and NO concentration profiles. The results show that differential diffusion plays an important role in these flames, especially near the flame base, where the temperature is increased above the adiabatic flame temperature and deviations from adiabatic equilibrium are large. The correlations between NO and mixture fraction and NO and temperature reveal characteristic features of the different flames.  相似文献   

9.
Spatial distributions of rotational temperatures and molecular number densities of C2H2 and H2 were measured with CARS during the production of ultrafine SiC powders in a laser pyrolytic process flame. By means of a CO2 laser, the reaction gases SiH4 and C2H2 (or alternatively C2H4) are converted into SiC and H2. From the CARS measurements temperature gradients are determined between 8.8 × 105 K/m and 1.6 × 106 K/m with corresponding heating rates of 1.8 × 106 K/s and 1.3 × 106 K/s. The CARS data also allow an estimation of the gas expansion behaviour in the reaction zone. Moreover, they show that diffusive velocity components of the hydrogen in the hot reaction zone do not exceed 0.4 m/s.  相似文献   

10.
In this paper, we study the influence of inert concentration and initial droplet diameter on nonane (C9H20) droplet combustion in an environment that promotes spherical droplet flames. The oxygen concentration is fixed while the inert is varied between nitrogen and helium. A range of initial droplet diameters (Do) are examined in each ambient gas: 0.4 mm < Do < 0.8 mm; and an oxidizing ambiance consisting of 30% oxygen (fixed) and 70% inert (fixed), with the inert in turn composed of mixtures of nitrogen and helium in concentrations of 0, 25, 50, 75, and 100% N2. The experiments are carried out at normal atmospheric pressure in a cold ambiance (room temperature) under low gravity to minimize the influence of convection and promote spherical droplet flames. For burning within a helium inert (0% N2), the droplet flames are entirely blue and there is no influence of initial droplet diameter on the local burning rate (K). With increasing dilution by nitrogen, droplet flames show significant yellow luminosity indicating the presence of soot and the individual burning histories show K reducing with increasing Do. The evolution of droplet diameter D(t) is nonlinear for a given Do in the presence of either helium or nitrogen inerts indicating that soot formation has little to do with nonlinear burning. A correlation is presented of the data in the form where the effective burning rate, K′, and ε are concentration-dependent. Correlations for these parameters are presented in the paper.  相似文献   

11.
Twenty-seven new cw far infrared laser lines with wavelengths between 137 and 988m have been observed from optically pumping C2H3F, C2H3Cl, C2H3Br, C2H5F, C2H3CN, CH2CF2, HCOOH and CH3Br with a CO2 laser. The wavelengths of these FIR laser lines were determined together with their optimum pressures and relative intensities.  相似文献   

12.
Huisken  F.  Kohn  B.  Alexandrescu  R.  Cojocaru  S.  Crunteanu  A.  Ledoux  G.  Reynaud  C. 《Journal of nanoparticle research》1999,1(2):293-303
Pulsed CO2-laser-induced decomposition of different mixtures of SiH4 and C2H2 in a flow reactor has been employed to produce silicon carbide clusters and nanoparticles with varying content of carbon. The as-synthesized species were extracted from the reaction zone by a conical nozzle and expanded into the source chamber of a cluster beam apparatus where, after having traversed a differential chamber, they were analyzed with a time-of-flight mass spectrometer. Thin films of silicon carbide nanoclusters were produced by depositing the clusters at low energy on potassium bromide and sapphire windows mounted into the differential chamber. At the same time, Si and SiC nanoparticles were collected in a filter placed into the exhaust line of the flow reactor. Both beam and powder samples were characterized by FTIR spectroscopy. The close resemblance of the spectra suggests that the composition of the beam and powder particles obtained during the same run is nearly identical. XRD spectroscopy could only be employed for the investigation of the powders. It was found that CO2 laser pyrolysis is ideally suited to produce silicon carbide nanoparticles with a high degree of crystallinity. Nanopowders produced from the pyrolysis of a stoichiometric (2:1) mixture of SiH4/C2H2 were found to contain particles or domains of pure silicon. The characteristic silicon features in the FTIR and XRD spectra, however, disappeared when C2H2 was applied in excess.  相似文献   

13.
Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He–Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ~2×10?7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.  相似文献   

14.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

15.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

16.
This paper reported the analysis of dilution effects on the opposed-jet H2/CO syngas diffusion flames. A computational model, OPPDIF coupled with narrowband radiation calculation, was used to study one-dimensional counterflow syngas diffusion flames with fuel side dilution from CO2, H2O and N2. To distinguish the contributing effects from inert, thermal/diffusion, chemical, and radiation effects, five artificial and chemically inert species XH2, XCO, XCO2, XH2O and XN2 with the same physical properties as their counterparts were assumed. By comparing the realistic and hypothetical flames, the individual dilution effects on the syngas flames were revealed. Results show, for equal-molar syngas (H2/CO = 1) at strain rate of 10 s?1, the maximum flame temperature decreases the most by CO2 dilution, followed by H2O and N2. The inert effect, which reduces the chemical reaction rates by behaving as the inert part of mixtures, drops flame temperature the most. The thermal/diffusion effect of N2 and the chemical effect of H2O actually contribute the increase of flame temperature. However, the chemical effect of CO2 and the radiation effect always decreases flame temperature. For flame extinction by adding diluents, CO2 dilution favours flame extinction from all contributing effects, while thermal/diffusion effects of H2O and N2 extend the flammability. Therefore, extinction dilution percentage is the least for CO2. The dilution effects on chemical kinetics are also examined. Due to the inert effect, the reaction rate of R84 (OH+H2 = H+H2O) is decreasing greatly with increasing dilution percentage while R99 (CO+OH→CO2+H) is less affected. When the diluents participate chemically, reaction R99 is promoted and R84 is inhibited with H2O addition, but the trend reverses with CO2 dilution. Besides, the main chain-branching reaction of R38 (H+O2→O+OH) is enhanced by the chemical effect of H2O dilution, but suppressed by CO2 dilution. Relatively, the influences of thermal/diffusion and radiation effects on the reaction kinetics are then small.  相似文献   

17.
Plasma chemical reactions in CH4/Ar and C2Hm/Ar (m = 2, 4, 6) gas mixtures in a dielectric barrier discharge at medium pressure (300 mbar) have been investigated. From mass spectrometry the production of H2 and formation of larger hydrocarbons such as CnHm with up to n = 12 is inferred. Hydrogen release is most pronounced for CH4 and C2H6 gas mixtures. Fourier Transform InfraRed (FTIR) spectroscopy reveals the formation of substituted alkane (sp3), alkene (sp2), and alkyne (sp) groups from the individual gases which are used in this work. Abundant formation of acetylene occurs from C2H4 and to a lesser extent from C2H6 and CH4 precursor gases. The main reaction pathway of acetylene leads to the formation of large molecules via C4H2 and, eventually, to nano‐size particles. The experimental results are in reasonable agreement with simulations which predict a pronounced electron temperature and gas pressure dependency. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for in situ, non-intrusive and quantitative CO2 concentration measurements in flames. Dispersion spectroscopy retrieves gas properties by measuring the refractive index in the vicinity of a molecular resonance. The HPSDS scheme features a significant diagnostic advantage of the intrinsic immunity to laser power fluctuations caused by beam steering, thermal radiation and soot scattering in combustion environments, and thus no extra calibration process is required. In this work, we described the spectroscopic fundamentals for measuring heterodyne phase signals in flames. As a proof of principle, we used a mid-infrared interband cascade laser (ICL) near 4183?nm to exploit the strong CO2 transitions in the R-branch of the v3 fundamental band. The HPSDS signals of four CO2 lines, R(76), R(78), R(80) and R(82), were measured in CH4/air flames to obtain CO2 concentrations at different equivalence ratios (Φ?=?0.8–1.2), yielding a good agreement with the simultaneous laser absorption measurements using the same ICL. With its immunity to laser power fluctuations verified experimentally, the HPSDS sensor was successfully implemented to measure CO2 concentrations in C2H4/air sooting flames (Φ?=?1.78–2.38). Laser dispersion spectroscopy proves to be a promising and alternative diagnostic tool for combustion measurements.  相似文献   

19.
The chemisorption of small molecules (CO, CO2, C2H2, C2H4, H2 and NH3) has been studied on the clean Fe(110) and (111) crystal faces by low-energy electron diffraction (LEED) and thermal desorption. C2H4 and C2H2 yield the same sequence of surface structures that change with temperature and crystal orientation. CO and CO2 chemisorption similarly results in the formation of the same types of surface structures that change with surface temperature and crystal orientation. Ammonia forms several ordered surface structures on both iron crystal faces. All of the molecules decompose as a function of temperature on the iron surfaces as indicated by the Auger and thermal desorption spectra.  相似文献   

20.
We have conducted experimental and numerical studies on flame synthesis of carbon nanotubes (CNTs) to investigate the effects of three key parameters – selective catalyst, temperature and available carbon sources – on CNT growth. Two different substrates were used to synthesize CNTs: Ni-alloy wire substrates to obtain curved and entangled CNTs and Si-substrates with porous anodic aluminum oxide (AAO) nanotemplates to grow well-aligned, self-assembled and size-controllable CNTs, each using two different types of laminar flames, co-flow and counter-flow methane–air diffusion flames. An appropriate temperature range in the synthesis region is essential for CNTs to grow on the substrates. Possible carbon sources for CNT growth were found to be the major species CO and those intermediate species C2H2, C2H4, C2H6, and methyl radical CH3. The major species H2, CO2 and H2O in the synthesis region are expected to activate the catalyst and help to promote catalyst reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号