首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Studies on the reactivity of ZnFe2O4 towards ZnV2O6 revealed that in the solid state the phases interact in a molar ratio of 1:3 to form a new compound, to which the molecular formula Zn2FeV3O11 was assigned. The compound melts congruently at 825±5°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Phase relations in subsolidus area of ZnO-V2O5-Fe2O3 system   总被引:1,自引:0,他引:1  
Phase equilibria in subsolidus area in the ZnO-V2O5-Fe2O3 system have been investigated over the whole concentration range of the oxides. The components of this system form two compounds: Zn2FeV3O11 and Zn3Fe4(VO4)6. A solidus area projection onto the component concentration triangle plane of the ZnO-V2O5-Fe2O3 system has been constructed using DTA and XRD methods. 11 subsidiary subsystems can be distinguished in this system. Melting temperatures of mixtures of solid phases coexisting at equilibrium in each of subsidiary subsystems were determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The binary Zn2FeV3O11?CMg2FeV3O11 system has been studied by XRD, DTA, IR, and SEM methods. A new continuous substitution solid solution with the formula Zn2?x Mg x FeV3O11 has been obtained by high-temperature synthesis. The DTA investigations were used to choose the heating temperatures as well as for determination of thermal stability of the new triclinic phase. The influence of the degree of Mg2+ ion incorporation on the unit cell volume as well as on the position of the IR absorption bands of the solid solution have been determined. The morphology of crystals of the new phase is presented.  相似文献   

4.
An Additional Oxovanadate Phase with Garnet Structure: Ca5Mg3ZnV6O24 Single crystals of Ca5Mg3ZnV6O24 were prepared by solid state reactions some degree below the melting point of the reaction mixture. It crystallizes with cubic symmetry, space group T-I4 3 d with a = 12.429 Å, Z = 4. The crystal structure is nearly related to the Garnet structure showing Ca2+ within distorted cubes (C.N. = 8) of O2? on a partly unfilled position. the octahedra position are occupied by Mg2+ and Zn2+ statistically.  相似文献   

5.
On the Crystal Structure of Ba3In2Zn5O11. An Oxoindate/zincatesol;zincate with Zn10O20 and In4O16 Macropolyhedra with Zn2+ in Tetrahedral Coordination by O2? Ba3In2Zn5O11 was prepared for the first time by a flux technique and investigated by single crystal X-ray work. It crystallizes with cubic symmetry, space group T-F4 3m, a = 13.3588 Å, Z = 8. Zn2+ show tetrahedral coordination by O2?, forming Zn10O20 macropolyhedra. In addition the nZn/Osol;O part of the crystal structure is made up of Zn10O20 parts. Edge connection of four InO6 octahedra results in In4O16 groups. The crystal structure will be shown and discussed.  相似文献   

6.
(Zn1-xMnx)C2O4·2H2O在空气中的热分解动力学研究   总被引:1,自引:0,他引:1  
用热分析(TG-DTG/DTA)、X射线衍射(XRD)技术和透射电镜(TEM)研究了固态物质Zn1-xMnxC2O4•2H2O在空气中热分解的过程。热分析结果表明,Zn1-xMnxC2O4•2H2O在空气中分两步分解,其失重率与理论计算失重率相吻合。 XRD和TEM结果表明,Zn1-xMnxC2O4•2H2O分解的最终产物为Zn1-xMnxO,其颗粒大小约为10-13 nm。在非等温条件下对Zn1-xMnxC2O4•2H2O的热分解动力学进行了分析。用Friedman法和Flynn-Wall-Ozawa(FWO)法求取了分解过程的活化能E,并用多元线性回归给出了可能的机理函数。Zn1-xMnxC2O4•2H2O两步热分解的活化能分别为155.7513 kJ/mol 和215.9397 kJ/mol。  相似文献   

7.
Synthesis and Structure Determination of CoV2O6 The hitherto unknown compound CoV2O6 was prepared by solid state reaction in single crystal form. The X-ray single crystal investigations lead to the space group C? C2 with a = 9.256, b = 3.508, c = 6.628 Å, β = 111.55°. CoV2O6 is isotypic with ZnV2O6 or β-CdV2O6. It shows an octahedral coordination of Co2+ and constructional units like V2O5.  相似文献   

8.
On a New Copper Cobalt Borate Oxide with Isolated B2O5 Units: Cu2Co(B2O5)O Single crystals of a new compound with the empirical formula Cu2CoB2O6 were obtained by using a B2O3 flux technique. X-ray single crystal technique led to a new structure type. Cu2CoB2O6 crystallizes monoclinic, space group C-P21/c (No. 14); a = 3.2250(6); b = 14.847(1); c = 9.1171(6) Å; β = 93.67°; Z = 4. All metal sites are octahedrally coordinated and form a two dimensional framework consisting of edge sharing octahedra ribbons. In addition one observes isolated B2O5-units and oxygen which is not coordinated to boron. The far relation to the crystal structure of the mineral Warwickite is illustrated.  相似文献   

9.
A New Praseodymiumniobate Pr2Nb11O30 By chemical vapor transport (T2 → T1, T2 = 950 °C, T1 = 900 °C, 3 d) of a mixture of PrOCl and Nb2O5 (1 : 1) using 5 mg NH4Cl as transport agent we obtained the new compound Pr2Nb11O30. The crystal structure determination [a = 6.2325(5) Å, c = 32.3677(36) Å, Z = 2, 1631 independent I0, 69 parameters, R1 = 2.07%] shows CN = 8 (twofold capped octahedrally) for Pr, CN = 7 (pentagonal bipyramidally) for Nb(1,2) and CN = 6 (octahedrally) for Nb(3). The structure is closely related to that of Cu5Ta11O30.  相似文献   

10.
About the New Compound Zn4Ta2O9 The hitherto unknown compound Zn4Ta2O9was prepared by high temperature reaction (CO2-LASER technique). The X-ray investigation of single crystal shows monoclinic symmetry (space group C? C2/c) with a = 15.002(6), b = 8.954(1), c = 10.345(4)Å and β = 93.64(3)°. Zn4Ta2O9 consists of a Zn/O-network with incorporated one-dimensional TaO6-chains. The edge connected TaO6-octahedrals are occupied by Ta5+ and 0.5 Zn2+ respectively. The crystal chemistry of this compound in respect to other Zn-oxotantalates are discussed.  相似文献   

11.
K2Zn3O4 and Rb2Zn3O4, Oxozincates with Framework Structure For the first time single crystals of K2Zn3O4 were obtained by heating mixtures of the binary oxides (K: Zn = 2.2:3) in sealed Ag- or Pt-capsules at 800°C (5 w). Powder of this colourless and moisture-sensitive oxide was prepared analogously at 500°C. It crystallizes monoclinic, space group C2/c with a = 1482.7(2), b = 637.3(1), c = 571,9(1) pm, β = 102.79(1)°, Z = 4, dx = 4.265 g/cm3, dpyk = 4.00 g/cm3. The crystal structure was determined from four-circle diffractometer data (MoKα, 730 unique hkl) and refined to R = 5.9%, Rw = 6.4%. It shows a Zn3O4 framework which consists of SiS2-like chains [ZnO4/2] connected by puckered layers of [ZnO3/3]. The crystal structure can be derived from a cubic closet packing of O2? and K+. Effective Coordination Numbers and the Madelung Part of Lattice Energy (MAPLE) are calculated. Rb2Zn3O4 was prepared from the binary oxides at 400°C (colourless hygroscopic powder). According to powder data it crystallizes isostructural to K2Zn3O4 with a = 1523.5(4), b = 649.8(2), c = 574.0(2) pm, β = 101.43(3)°, Z = 4, dx = 5.141 g/cm3, dpyk = 5.20 g/cm3.  相似文献   

12.
Hollow ZnV2O4 microspheres with a clewlike feature were synthesized by reacting zinc nitrate hexahydrate and ammonium metavanadate in benzyl alcohol at 180 °C for the first time. GC–MS analysis revealed that the organic reactions that occurred in this study were rather different from those in benzyl alcohol based nonaqueous sol–gel systems with metal alkoxides, acetylacetonates, and acetates as the precursors. Time‐dependent experiments revealed that the growth mechanism of the clewlike ZnV2O4 hollow microspheres might involve a unique multistep pathway. First, the generation and self‐assembly of ZnO nanosheets into metastable hierarchical microspheres as well as the generation of VO2 particles took place quickly. Then, clewlike ZnV2O4 hollow spheres were gradually produced by means of a repeating reaction–dissolution (RD) process. In this process, the outside ZnO nanosheets of hierarchical microspheres would first react with neighboring vanadium ions and benzyl alcohol and also serve as the secondary nucleation sites for the subsequently formed ZnV2O4 nanocrystals. With the reaction proceeding, the interior ZnO would dissolve and then spontaneously diffuse outwards to nucleate as ZnO nanocrystals on the preformed ZnV2O4 nanowires. These renascent ZnO nanocrystals would further react with VO2 and benzyl alcohol, ultimately resulting in the final formation of a hollow spatial structure. The lithium storage ability of clewlike ZnV2O4 hollow microspheres was studied. When cycled at 50 mA g?1 in the voltage range of 0.01–3 V, this peculiarly structured ZnV2O4 electrode delivered an initial reversible capacity of 548 mAh g?1 and exhibited almost stable cycling performance to maintain a capacity of 524 mAh g?1 over 50 cycles. This attractive lithium storage performance suggests that the resulting clewlike ZnV2O4 hollow spheres are promising for lithium‐ion batteries.  相似文献   

13.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

14.
On the Synthesis and Crystal Structure of Ba6Lu4Zn10O22 with [OBa6] Octahedra Single crystals of Ba6Lu4Zn10O22 have been prepared by high temperature reactions and investigated by X-ray techniques. This compound is isotypic to Ba3In2Zn5O11 and the first member of the Rare Earth elements. Ba6Lu4Zn10O22 crystallizes with cubic symmetry, space group T-F4 3m, a = 13.452(1) Å and Z = 4. Zn2+ shows a tetrahedral, Lu3+ an octahedral and Ba2+ a three-fold capped trigonal prismatic coordination by O2?. The ZnO4 tetrahedra and LuO6 octahedra are forming macro polyhedra of the type Zn10O20 and Lu4O16. A discussion is given for the Ba6O33 and Ba6O42 groups.  相似文献   

15.
A macrocyclic oxime ligand H6L, which has an O6 cavity surrounded by three N2O2 chelate sites, was synthesized and the multistep oligometal complexation behavior was investigated. Upon complexation with zinc(II), the H6L ligand afforded two kinds of hexanuclear complexes, L2Zn6 then LZn6. Each of the complexation steps proceeded highly efficiently. In the latter complex, a Zn33‐OH) unit was incorporated into the trimetalated ligand, LZn3. The integrated N2O2 chelate coordination sites provide a unique environment for a homometallic complex. The different nature of the peripheral N2O2 sites and the central O6 site is particularly suitable for the selective formation of heterometallic complexes. Complexation with the zinc(II) ion in the presence of alkaline earth (Ca and Ba) or rare earth (La, Eu, Lu) metal ions afforded the heterotetranuclear complexes LZn3M (M=Ca, Ba, La, Eu, Lu), in which zinc(II) and ion M occupied the N2O2 and O6 sites, respectively. Titration experiments showed that the heterometallic complexes LZn3Ca and LZn3Ba were converted into the homometallic complex LZn6 whereas LZn3La was not. As a result, the binding affinity in the central O6 site of the LZn3 unit is apparently in the order of Ca2+, Ba2+3(μ3‐OH)3+. This difference in the affinities of metal ions as well as the ionic sizes makes the novel conversion efficient, particularly in the case of the three‐step conversion from H6L to H2LZn2Ba, LZn3Ba, then LZn6.  相似文献   

16.
Polyaniline/neodymium(III) oxide (PANI/Nd2O3) composites were synthesized by in situ chemical oxidative polymerization method, and the new electrode materials were used for supercapacitor. The composites were characterized physically by scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR) and X‐ray diffraction (XRD). SEM, IR and XRD results showed the existence of interactions between PANI and Nd2O3. The electrochemical capacitance performance of the composites was investigated by cyclic voltammetry, galvanostatic charge–discharge tests and ac impedance spectroscopy with a three‐electrode system in 6 M KOH solution. Cyclic voltammetry and galvanostatic charge/discharge tests proved that the addition of Nd2O3 enhanced the capacitance of the composites. However, the conductivity of the composites decreases with increasing the amount of Nd2O3. Electrochemical impedance tests manifest that the charge‐transfer resistance of the composites is smaller than that of the pure PANI, which indicates the addition of Nd2O3 could lower resistance and facilitate the charge transfer of the active materials. All results support that Nd2O3 has a significant contribution to the performance of PANI and makes the composites have more active sites for faradiac reaction and larger specific capacitance than pure PANI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

18.
A new compound, Pb6AlB2O7F7, was synthesized from the PbF2/B2O3 flux system, which is the first compound found in the PbF2/Al2O3/B2O3 system. It crystallizes in the orthorhombic system, space group Cmca (No. 64) with unit cell parameters a = 11.649(7) Å, b = 18.300(11) Å, c = 6.394(4) Å, Z = 4. The crystal structure of Pb6AlB2O7F7 contains the group [Pb6BO11F10] as basal building unit, which connects with each other forming two‐dimensional [Pb6BO11F10] layers, whereas aluminum atoms are filled in the interlayers. The IR spectrum further confirms the presence of BO3 groups. The calculated band structures and the density of states of Pb6AlB2O7F7 suggest that its indirect gap is 2.968 eV. The DSC analysis and X‐ray diffraction technique prove that Pb6AlB2O7F7 is a congruent‐melting compound.  相似文献   

19.
Neutron diffraction powder profile analysis has been used to determine the structure of Li2FeV3O8. The compound is prepared from FeV3O8, which has the VO2(B) structure type, by a lithium insertion reaction employing n-BuLi. Only minimal distortion of the host lattice occurs on Li insertion. The Li ions occupy five coordinate square pyramidal sites with an average LiO bond distance of 2.04 Å. These five coordinate sites occur commonly in the capped perovskite cavities of crystallographic shear structures based on ReO3.  相似文献   

20.
Preparation of Crystal Structure of K6[Al2O6] and Rb6[Al2O6] Colourless single crystals of K6[Al2O6] have been prepared from intimate mixtures of KAlO2 and K2O (550°C, 90 d). The structure determination from four-circle diffractometer data (MoKα , 742 Io(hkl), R = 2.2%, Rw = 2.1%) confirms the space group C2/m with Z = 2; a = 698.25 pm, b = 1 103.54 pm, c = 646.49 pm, β = 102.49°. Colourless single crystals of hitherto unknown Rb6[Al2O6] have been prepared from intimate mixtures of RbAlO2 and Rb2O (520°C, 120 d). The structure determination from four-circle diffractometer data (MoKα , 1 240 Io(hkl)) results in the residual values R = 7.2%, Rw = 4.9%; space group C2/m; a = 725.92 pm, b = 1 143.33 pm, c = 678.06 pm, β = 104.05°; Z = 2. K6[Al2O6] and Rb6[Al2O6] are isostructural with K6[Fe2O6]. A characteristic structure unit is the anion [Al2O6]6? consisting of two edge-sharing [AlO4] tetrahedra. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), the Madelung Part of Lattice Energy (MAPLE) and the Charge Distribution (CHARDI) are calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号