首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites are investigated using a 3-dimensional micromechanics-based approach. The main advantage of the proposed micromechanical model is its ability to give closed-form formulation for predicting the effective properties of nanocomposites. In the micromechanical modeling, the interphase formed due to non-boned van der Waals interaction between the continuous CNT and polymer matrix is considered through employing an individual representative volume element. The validity of the model is examined by comparing its results with other theoretical approaches and experimental data available in the literature. The effects of various types of CNTs arrangement in the matrix, i.e. uniform distribution and different functionally graded distributions on the elastic, thermoelastic and viscoelastic properties of polymer nanocomposites are investigated in detail. Furthermore, random arrangement of CNTs in the matrix is modelled. The influences of CNT/polymer matrix interphase and CNT volume fraction on the effective properties of nanocomposites are also studied. Finally, the viscoelastic response of nanocomposites under multiaxial loading is extracted and interpreted.  相似文献   

2.
The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed. Victor G. Oshmyan deceased.  相似文献   

3.
The residual stress generated by the molding process of thermosetting resins exerts serious influences upon their mechanical properties. This residual stress is generally classified by two groups: one produced by shrinkage in the curing reaction of monomers, the other produced by the nonuniformity of the temperature distribution in the cooling process. This paper is concerned with the theoretical and experimental analysis of the generation of residual stress of the latter type, using examples of rectangular beams of thermosetting resins quenched on both the upper and lower surfaces. First, a viscoelastic model is applied to make a qualitative prediction of the residual stress in quenched beams. Second, using linear-viscoelastic theory, fundamental equations are derived for the residual stress in a viscoelastic rectangular beam, where an unsteady and nonuniform temperature distribution is assumed in the direction of depth. The theoretical values of the residual stress in rectangular beams are calculated under various quenching conditions for two resins having different viscoelastic characteristics, i.e., epoxy and unsaturated polyester. The theoretical residual-stress distributions agree fairly well with the residual stress measured experimentally at every quenching condition for both resins. The qualitative prediction that the residual stress in quenched beams is compressive in the vicinity of the upper and lower surfaces and is tensile in the inner parts is confirmed. The relaxation modulus of epoxy resin changes more greatly with time and temperature than that of unsaturated polyester resin. The theoretical and experimental analysis shows that the residual stress for the former resin is larger than that for the latter. Therefore, it is concluded that the generation of residual stress is more significant where the relaxation modulus of resin changes greatly with time and temperature.  相似文献   

4.
Rheological properties of suspensions of fibers in polymeric fluids are influenced by fiber–polymer interactions. In this paper, we investigate this influence from both experimental and modeling standpoints. In the experimental part of this investigation, we have changed the fiber–polymer interactions by treating the surface of the fibers. The resulting effects are observed using scanning electron microscopy and dynamic mechanical analysis techniques and quantified from the measurements of the viscosity in the start-up of shear flows and dynamic tests in the linear viscoelastic range region. The results are interpreted with the help of a mesoscopic rheological model developed for suspensions of fibers in viscoelastic fluids.  相似文献   

5.
The dynamic properties as a function of frequency and strain amplitude, steady-state viscosity as a function of shear rate, and transient shear stresses at startup and cessation of shear flow of polystyrene (PS)/fumed silica mixtures of various concentrations were investigated. An abrupt change in the viscoelastic properties was noticed at a concentration above 1% by volume. Observations by means of scanning electron microscopy (SEM) indicate the presence of a three-dimensional network through the bridging of filler particles by the adsorbed polymer. The viscoelastic behavior is simulated utilizing a theory proposed in Part I (Havet and Isayev 2001) based on a double network created by the entangled polymer matrix and the adsorbed polymer with filler concentration taken into account through the bridging density of polymer-filler interactions and a hydrodynamic reinforcement. The steps taken for determining the model parameters required to carry out the simulation are described. The major features of the rheological behavior of highly interactive polymer-filler mixtures are captured qualitatively and in some cases, quantitatively predicted.  相似文献   

6.
The branched polymer melts are modeled respectively in this investigation by the existing XPP and PTT–XPP models, along with the proposed S-MDCPP (Single/Simplified Modified Double Convected Pom-Pom) model developed on the basis of the existing MDCPP model. A pressure stabilized mass equation is formulated with the finite increment calculus (FIC) process to restrain and further eliminate spurious oscillations of pressure field due to the incompressibility of fluids. The discrete elastic viscous stress splitting (DEVSS) technique is employed, in order to retain an elliptic contribution in the weak form of the momentum equation. An inconsistent streamline-upwind (SU) method is applied to spatially discretize the constitutive equations. The mass, momentum conservation and constitutive equations are discretized and solved by the iterative stabilized fractional step algorithm along with the Crank–Nicolson implicit difference scheme. Thus the finite elements with equal low-order interpolation approximations for velocity–pressure–stress variables can be devised to numerically simulate the viscoelastic contraction flows for branched LDPE melts. The influences of the three viscoelastic constitutive models and the branched arms at the end of the Pom-Pom molecule on the rheological behaviors occurring in this complex flow are discussed. The numerical results demonstrate that the proposed S-MDCPP model is capable of reproducing some properties similar to those predicted by the XPP model in high shear flow and, on the other hand, reproducing some properties similar to those predicted by the PTT–XPP model in high elongational flow. Furthermore, the proposed S-MDCPP model is capable of well identifying the macromolecule topological structures of branched polymer melts.  相似文献   

7.
In this study, three EVAs (ethylene-vinyl acetate co-polymers) with different vinyl contents (VA) ranging from 9 wt% to 28 wt% (EVA9, EVA18 and EVA28) were melt blended with organo-clay to obtain polymer layered silicate nanocomposites. Filler intercalation and exfoliation were evidenced by X-ray diffraction. The melt state viscoelastic properties of EVA nanocomposites were studied to examine the influence of clay in altering the flow properties of these polymeric nanocomposites. The EVA18 and EVA28 nanocomposites exhibited remarkable difference in dynamic and steady shear properties compared to neat polymers. On the other hand, EVA9-5% nanocomposite did not exfoliate and exhibited rheological behaviour very similar to that of the neat polymer. Furthermore, the first normal stress difference was found to be dependent on the silicate loadings when measured at low shear stresses. The uniaxial extensional viscosity measurement indicated that the strain hardening was weaker in EVA nanocomposites compared to neat polymers. Environmental scanning electron (ESE)-microscopy elucidated a possible reason for reduced strain hardening in these systems.  相似文献   

8.
We present a new approach to describe the rheological properties of dispersions with non-hydrodynamic interactions (steric, electrostatic and Van der Waals interactions) in the linear viscoelastic domain. Our model is based on the calculation of additional stresses resulting from interaction potentials between spheres and Brownian motion. We start from the statistical mechanical approaches which have been developed by Batchelor and Green and later Lionberger and Russel, to model the viscoelastic properties of emulsions and suspensions. We have extended their calculations to the more general case of viscoelastic deformable inclusions in a viscoelastic matrix. Our contribution lies in the computation of the hydrodynamic functions involved in the term describing interaction stresses. This computation is based on Palierne's results on the deformation field around a viscoelastic inclusion embedded in a viscoelastic matrix. We have also rewritten the conservation equation in the case of interest, over the whole frequency domain. We finally express the complex shear modulus of the dispersion as the sum of two terms : Palierne's complex shear modulus gives the purely hydrodynamic contribution; the interaction contribution depends on both the hydrodynamic properties and the interaction potential.  相似文献   

9.
Differential equations are derived and the hydraulic impact process for “exponential” and nonlinearly viscoplastic media in pipes made of a viscoelastic material is analyzed. Hydraulic impact problems for actual media in pipes has been repeatedly treated in the literature [1–4]. The hydraulic impact of a viscous and linearly viscoplastic media in pipes made of an elastic and viscoelastic material was studied in this work. It is well known [5] that many media in the region of low and moderate shear rates reveal a nonlinearity of the flow curve (oil, drilling fluids, polymer solutions and melts, loaded fuels, fuel mixtures, blood, etc.). It should be noted that flexible pipes made of natural materials (pipe boreholes made of polymer materials, membranes of blood vessels, etc.) are described by complicated rheological equations of state for viscoelastic media. Thus a calculation of the influence of nonlinearity of these media and of the viscoelastic properties of the pipe material on the hydraulic impact process is of theoretical and practical interest in many engineering problems.  相似文献   

10.
The main purpose of this study was to examine the viscous and elastic properties and capillary flow of fiber suspensions in Newtonian fluids as well as in polymer solutions. The fillers used were glass, carbon, nylon and vinylon fibers. Glycerin was used as a Newtonian suspending medium and HEC and Separan solutions as viscoelastic suspending media. The viscosity and the first normal-stress difference were measured using a coaxial cylindrical rotating viscometer and a parallel-plate rheogoniometer respectively. The influence of the concentration, aspect ratio, diameter and flexibility of the fibers on the viscous and elastic properties of the fiber suspensions was investigated. Empirical equations were obtained for the relative viscosity and first normal-stress difference for the fiber suspensions in glycerin. The capillary flow of these suspensions is discussed in part II.  相似文献   

11.
In this paper, viscoelastic shear horizontal (SH) wave propagation in functionally graded material (FGM) plates and laminated plates are investigated. The controlling differential equation in terms of displacements is deduced based on the Kelvin–Voigt viscoelastic theory. The SH wave characteristics is controlled by two elastic constants and their corresponding viscous coefficients. By the Legendre polynomial series method, the asymptotic solutions are obtained. In order to verify the validity of the method, a homogeneous plate is calculated to make a comparison with available data. Through three different graded plates, the influences of gradient shapes on dispersion and attenuation are discussed. The viscous effects on the displacement and stress shapes are illustrated. The different boundary conditions are analyzed. The influential factors of the viscous effect are analyzed. Finally, two multilayered (two layer and five layer) viscoelastic plates that are composed of the same material volume fraction are calculated to show their differences from the graded plate.  相似文献   

12.
To achieve a stable evaluation of the linear viscoelasticity of bubble suspensions, which have difficulties for conventional rheometers from spatial distributions of rheological properties with bubble deformations, we proposed a novel rheometry based on spatio-temporal velocity data obtained by ultrasonic velocity profiling (UVP). A frequency-domain algorithm was adopted to overcome a critical influence of measurement noise on the rheological assessment, which is inferred from error propagation characteristics through the equations of motion in discretized form. Applicability and advantage of the present rheometry with the frequency-domain algorithm were verified by two kinds of fluids: high viscous oil as a Newtonian fluid and polyacrylamide aqueous solution as a shear thinning, viscoelastic fluid. The rheometry was finally adopted for bubble suspensions subject to high oscillatory shear, and it could validly extract elasticity-originated momentum transfer as a function of space.  相似文献   

13.
We study the onset of a yield stress in a polymer microgel dispersion using a combination of particle-tracking microrheology and shear rheometry. On the bulk scale, the dispersion changes from a predominantly viscous fluid to a stiff elastic gel as the concentration of the microgel particles increases. On the microscopic scale, the tracer particles see two distinct microrheological environments over a range of concentrations—one being primarily viscous, the other primarily elastic. The fraction of the material that is elastic on the microscale increases from zero to one as the concentration increases. Our results indicate that the yield stress appears as the result of jamming of the microgel particles, and we infer a model for the small-scale structure and interactions within the dispersion and their relationship to the bulk viscoelastic properties.  相似文献   

14.
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both the geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. We apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.  相似文献   

15.
Rheological behaviour of polymer nanocomposites has been usually characterized by rotational as well as capillary rheometry, which are both time and cost consuming. We have already published that reinforcement in polymer-clay nanocomposites can be estimated very fast using extensional rheometer in combination with a capillary rheometer. It has been proven that the magnitude of melt strength can be correlated with that of tensile strength, i.e. 3D physical network made of layered silicate and polymer matrix, which is responsible for material reinforcement, can be monitored directly using extensional rheometry. Therefore, additional time for samples preparation by press or injection moulding as well for long measurements by tensile testing is not required any more. In this contribution, results of extensional rheometry measured directly during compounding process are presented. In this manner, further reduction in time required for material characterization has been achieved. The samples have been prepared by advanced compounding using a melt pump and special screw geometries. With the use of on-line extensional rheometry and off-line rotational rheometry, different nanocomposites have been tested and the effect of processing conditions (screw speed and geometry in the twin-screw extruder) on elongational and viscoelastic properties has been investigated. It has been found that the level of melt strength measured by extensional rheometry correlates with a high accuracy with dynamic rheological data measured by rotational rheometry. It was hereby confirmed that the network structure made of silicate platelets in polymer melt is reflected in both elongational and shear flow in the same way.  相似文献   

16.
Three different experimental measurements, namely, rheology, particle sizing, and x-ray diffraction (XRD), were used to study the effect of anionic additives on the properties of bentonite suspensions. The three additives were sodium carboxymethylcellulose, xanthan gum, and sodium dodecyl sulfate. Flow curves were obtained from shear stress–shear rate measurements, and the viscoelastic properties were determined from oscillatory and transient measurements. Mineralogical data were evaluated by XRD and the particle size analysis performed by light scattering technique. The presence of the surfactant modifies the face-to-face interactions and yields changes of the mixtures rheological behavior at low deformation rates. Polymers act by coating each clay particle and prevent their agglomeration. Therefore, the additives are responsible for the mechanisms of destructuration and structure reorganization as well as the mixtures viscous and viscoelastic behavior.  相似文献   

17.
Stress predictions have been made for two materials using the new strain measure developed in Part I. For the startup of steady-shear flow, the predictions show increasing overshoot of shear and normal stresses at increasing shear rates, and both qualitatively and quantitatively there is good agreement with the experimental results for a polymer solution and a melt. The information contained in Part I on the strain measure is found to be insufficient for making exact predictions for flows other than shear flows, but it is shown here that uniaxial elongational flow is sufficiently similar to shear flow for predictions to be made with only a low degree of inaccuracy. Data on the elongational behaviour of the melt are available from the literature and the predictions made here are found to be in satisfactory agreement with the reported behaviour. All of the predictions require as input information only the linear viscoelastic behaviour of the material.  相似文献   

18.
This is the second part of a study examining the mechanical properties and capillary flow of fiber suspensions in Newtonian fluids and in polymer solutions. In part I results for the viscous and elastic properties of the fiber suspensions were presented and it was shown that the fiber suspensions exhibited normal stresses in Newtonian as well as in viscoelastic suspending media. It was thus expected that circulating secondary flows would occur near the entrance to a capillary. Four types of fillers (glass, carbon, nylon and vinylon fibers) suspended in glycerin, HEC solutions and Separan solutions were investigated. The entrance flow patterns were visualized and the pressure fluctuations measured. The visualization enabled the eddies occurring in the fiber suspensions in Newtonian fluids to be analysed and classified into two tpyes. The results from the flow visualization were correlated with the pressure fluctuations. Empirical equations for the tube length correction factor due to the elasticity were obtained.  相似文献   

19.
The effect of flow history on the linear and non-linear viscoelastic properties of non-polar polymer nanocomposites (PNCs) has been investigated by means of a suitable model system based on a Newtonian matrix. The structural recovery of this model suspension after cessation of different pre-shear rates was monitored by measuring its linear viscoelastic properties while its structural evolution under shear flow was followed by using stepwise changes in shear rate including flow reversal measurements. To assess the kinetics of the structural evolution at rest and under flow, empirical relations of stretched exponential form were used. It is shown that for different pre-shear rates, different equilibrium structures were reached at rest but with a similar kinetics of recovery. As a result, the low frequency behaviour was typical of solid-like or weak gel material, strongly dependent on the flow history. After any given shear rate under steady state, only one reversible equilibrium structure was reached after a kinetics that was dependent on the pre-shear history. Finally, typical flow reversal responses as observed for PNCs are reported and interpreted in light of the microstructure evolution under flow. This paper was presented at the Annual Meeting of the European Society of Rheology, Hersonisos, Greece April 2006.  相似文献   

20.
 The elastic properties of model suspensions with spherical monodisperse hydrophilic glass spheres that were dispersed in a Newtonian liquid were determined in creep and creep recovery measurements in shear with a magnetic bearing torsional creep rheometer. The creep and creep recovery measurements were performed depending on the applied level of shear stresses ranging from 0.19 Pa to 200 Pa. Since the recoverable creep compliances of the chosen suspending medium (i.e. a low molecular weight polyisobutylene) were far below the lower limit of the resolution of the creep rheometer it can be considered to behave as purely viscous. By applying a large shear stress in the creep tests the investigated suspensions with a volume fraction of Φ t =0.35 behave as Newtonian liquids, too. For these suspensions no significant recoverable creep compliances could be detected, as well. In contrast to the Newtonian state of suspensions at high shear stresses, where a shear induced ordering of the particles can be expected, a non-Newtonian behaviour arises by applying a very low shear stress in the creep test. In this state large recoverable creep compliances were detected for the suspensions. The magnitude of the recoverable creep compliances of the suspensions exceeded the largest creep compliances of polymer melts that are reported in the literature by more than two decades. From the results obtained by creep recovery measurements with a magnetic bearing torsional creep rheometer it can clearly be concluded that the particle structure present in the chosen model suspension gives rise to a pronounced elasticity. Received: 21 November 2000 Accepted: 12 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号