首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field are investigated. It is found that chiral surface states parallel to the magnetic field are responsible for the quantized Hall (QH) conductance (2n + 1)e2/h multiplied by the number of Dirac cones. Due to the two-dimensional nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed.  相似文献   

2.
The quantum Hall (QH) effect in two-dimensional electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors nu = 0, +/-1, +/-4 are discovered at magnetic fields B > 20 T, indicating the lifting of the fourfold degeneracy of the previously observed QH states at nu = +/-4(absolute value(n) + 1/2), where n is the Landau-level index. In particular, the presence of the nu = 0, +/-1 QH plateaus indicates that the Landau level at the charge neutral Dirac point splits into four sublevels, lifting sublattice and spin degeneracy. The QH effect at nu = +/-4 is investigated in a tilted magnetic field and can be attributed to lifting of the spin degeneracy of the n = 1 Landau level.  相似文献   

3.
We investigate the quantum Hall (QH) states near the charge-neutral Dirac point of a high mobility graphene sample in high magnetic fields. We find that the QH states at filling factors nu=+/-1 depend only on the perpendicular component of the field with respect to the graphene plane, indicating that they are not spin related. A nonlinear magnetic field dependence of the activation energy gap at filling factor nu=1 suggests a many-body origin. We therefore propose that the nu=0 and +/-1 states arise from the lifting of the spin and sublattice degeneracy of the n=0 Landau level, respectively.  相似文献   

4.
We study the phase diagram of composite fermions (CFs) in the presence of spin and pseudospin degrees of freedom in the bilayer nu=2/3 quantum Hall (QH) state. Activation studies elucidate the existence of three different QH states with two different types of hysteresis in the magnetotransport. While a noninteracting CF model provides a qualitative account of the phase diagram, the observed renormalization of tunneling gap and a non-QH state at high densities are not explained in the noninteracting CF model, and are suggested to be manifestations of interactions between CFs.  相似文献   

5.
The nuclear-spin-relaxation rate 1/T(1) has been measured in a bilayer electron system at and around total Landau level filling factor nu=1. The measured 1/T(1), which probes electron spin fluctuations, is found to increase gradually from the quantum Hall (QH) state at low fields through a phase transition to the compressible state at high fields. Furthermore, 1/T(1) in the QH state shows a noticeable increase away from nu=1. These results demonstrate that, as opposed to common assumption, the electron spin degree of freedom is not completely frozen either in the QH or the compressible states.  相似文献   

6.
Entanglement in topological phases of matter has so far been investigated through the perspective of their ground-state wave functions. In contrast, we demonstrate that the excitations of fractional quantum Hall (FQH) systems also contain information to identify the system's topological order. Entanglement spectrum of the FQH quasihole (QH) excitations is shown to differentiate between the conformal field theory (CFT) sectors, based on the relative position of the QH with respect to the entanglement cut. For Read-Rezayi model states, as well as Coulomb interaction eigenstates, the counting of the QH entanglement levels in the thermodynamic limit matches exactly the CFT counting, and sector changes occur as non-Abelian quasiholes successively cross the entanglement cut.  相似文献   

7.
Integer and fractional quantum Hall (QH) effects are studied in bilayer electron systems both theoretically and experimentally, especially, at ν=2 and 2/3. Due to the spin and layer degrees of freedom, the SU(4) symmetry underlies the integer QH states, where quantum coherence develops spontaneously and quasiparticles are coherent excitations. It is intriguing that a pair of skyrmions makes one quasiparticle at ν=2. In the fractional QH regime, on the other hand, the composite-fermion cyclotron gap competes with the Zeeman and tunneling gaps, bringing in new phases and excitations. At ν=2/3 our experimental data suggest that a quasiparticle is not a coherent excitation but simply a composite fermion.  相似文献   

8.
We report current transmission data through a split-gate constriction fabricated onto a two-dimensional electron system in the integer quantum Hall (QH) regime. Split-gate biasing drives interedge backscattering and is shown to lead to suppressed or enhanced transmission, in marked contrast to the expected linear Fermi-liquid behavior. This evolution is described in terms of particle-hole symmetry and allows us to conclude that an unexpected class of gate-controlled particle-hole-symmetric chiral Luttinger liquids (CLLs) can exist at the edges of our QH circuit. These results highlight the role of particle-hole symmetry on the properties of CLL edge states.  相似文献   

9.
Mass formulas for colored vector mesons are derived under the assumption of one common mixing angle forSU(3), independent of the color quantum numbers, and correspondingly one common mixing angle () forSU(3). This a priori plausible assumption turns out to have strong implications and thus might be too restrictive. We allow for a non-trivial spatial overlap integral between color-singlet and color-octet states. Various cases are treated and physical possibilities are identified. The best agreement is obtained for = 0. There are two models of this type with and without a part of the symmetry breaking Hamiltonian density transforming as (Y, Y) underSU(3)SU(3). Models with 0 are also possible. They cannot have a (Y, Y) and predict 3.34 GeV as the mass of the (3.7). This error of 10% may however be used to reject this possibility. Masses of colored vector mesons are predicted in the various models. If a (Y, Y) is present, ideal mixing inSU (3) is implied by the general formalism of the model.  相似文献   

10.
The skyrmions in SU(N) quantum Hall (QH) system are discussed. By analyzing the gauge field structure and the topological properties of this QH system it is pointed out that in the SU(N) QH system there can exist (N-1) types of skyrmion structures, instead of only one type of skyrmions. In this paper, by means of the Abelian projections according to the (N - 1) Cartan subalgebra local bases, we obtain the (N - 1) U(1) electromagnetic field tensors in the SU(N) gauge field of the QH system, and then derive (N - 1) types of skyrmion structures from these U(1) sub-field tensors. Furthermore, in light of the C-mapping topological current method, the topological charges and the motion of these skyrmions are also discussed.  相似文献   

11.
黄旭辉  胡岗 《中国物理 B》2014,(10):613-620
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.  相似文献   

12.
Magneto-transport measurements are performed on two-dimensional GaAs electron systems to probe the quantum Hall (QH) effect at low magnetic fields. Oscillations following the Shubnikov-de Haas (SdH) formula are observed in the transition from the insulator to QH liquid when the observed almost temperature-independent Hall slope indicates insignificant interaction correction. Our study shows that the existence of SdH oscillations in such a transition can be understood based on the non-interacting model.  相似文献   

13.
The incompressible quantum Hall strip is sensitive to charging of localized states in the cyclotron gap. We study the effect of localized states by a density functional approach and find electron density and the strip width as a function of the density of states in the gap. Another important effect is electron exchange. By using a model density functional which accounts for negative compressibility of the QH state, we find electron density around the strip. At large exchange, the density profile becomes nonmonotonic. Both effects, localized states and exchange, lead to a substantial increase of the strip width.  相似文献   

14.
We are describing the thermionic double-diode which is a suitable instrument for excited state laser spectroscopy. In comparison to the optogalvanic technique the signal-to-noise ratio was found to be 102?103 times better, investigating transitions between excited Sr or Ba states. Combined with its high detection sensitivity the thermionic double-diode presents the possibility of investigating transitions between high angular momentum states. It is demonstrated by studying transitions between Rydberg levels and doubly-excited autoionizing states in Ba. Further advantages are (i) the small strength of the dc electric field and the low electron density in the laser excitation region of the double-diode commending itself for studies of Doppler-free transitions to highly excited states and (ii) the very stable working conditions allowing to vary the pressure and current conditions in the diode in a much wider range than in a discharge.  相似文献   

15.
In experiments on resonant tunneling through a quantum antidot in the quantum Hall (QH) regime, we observe periodic conductance peaks both versus magnetic field and a global gate voltage, i.e., electric field. Each conductance peak can be attributed to tunneling through a quantized antidot-bound state. The fact that the variation of the uniform electric field produces conductance peaks implies that the deficiency of the electrical charge on the antidot is quantized in units of charge of quasiparticles of surrounding QH condensate. The period in magnetic field gives the effective area of the antidot state through which tunneling occurs, the period in electric field (obtained from the global gate voltage) then constitutes a direct measurement of the charge of the tunneling particles. We obtain electron charge C in the integer QH regime, and quasiparticle charge C for the QH state.  相似文献   

16.
赵博  陈增兵 《中国物理》2005,14(2):378-381
研究了原子霍尔效应中复合粒子描述方法,并进一步给出Chern-Simon-Gross-Pitaevskii(CSGP)有效场描述。研究结果表明从平均场和复合粒子的角度来看原子霍尔效应和电子霍尔效应是一致的。  相似文献   

17.
The absorption spectrum of the HDO molecule recorded by intracavity laser absorption spectroscopy in the 14 980-15 350 cm(-1) spectral region was assigned and modeled in the frame of the effective Hamiltonian approach. The spectrum (496 lines) results, mainly, from transitions to the rotational sublevels of the (014) bright state. An important number of transitions involving the (142) and (0 12 0) highly excited bending states could be identified, borrowing their intensities through high-order resonance interactions with the (014) state. An original feature shown by the present analysis is that all the transitions involving unperturbed energy levels of the (014) state are exclusively of A type, while both A- and B-type transitions are observed when the upper states are perturbed by the resonance interactions. One hundred forty-five energy levels of the three interacting states were derived from the spectrum and fitted to the effective rotational Hamiltonian in Pade-Borel approximants form with 29 varied parameters yielding an rms deviation of 0.038 cm(-1). A few energy levels are affected by additional local resonances with perturbers which have been identified. Finally, 48 transitions of the very weak 6nu(1) band were assigned and fitted as an isolated band. Copyright 2000 Academic Press.  相似文献   

18.
Starting from a model of an indirect optical semiconductor with two bands, the electron states are calculated in the presence of an additional periodic one-dimensional potential (superlattice) in the semiconductor material. These states are used to determine the transition probability connected with the absorption of a photon. This transition corresponds to an optical direct transition — no phonon takes part in this process. The optical direct and optical indirect transitions are compared. For optical frequencies near the band gap one expects only direct transitions, whereby the optical indirect transitions may be neglected.  相似文献   

19.
We have studied the photoluminescence of Ge samples cleaved in ultra-high vacuum to better understand the role of intrinsic surface states in radiative and non-radiative recombination. We find that the surface states associated with the as-cleaved surface (2 × 1 reconstructed 〈111〉) are very efficient in quenching the band-to-band recombination at T ~ 90 K. The transitions through surface states are predominantly non-radiative. The adsorption of oxygen, up to a half monolayer, markedly reduces this quenching effect by removing the surface state bands. Some preliminary experimental results on the question of radiative transitions involving the surface states is presented. No luminescence unambiguously attributable to surface state transitions is observed for wavelengths shorter than 5 μm.  相似文献   

20.
We study the quantum Hall (QH) effect for an electron moving in a plane whose coordinates and momenta are noncommuting under the influence of uniform external magnetic and electric fields. After solving the time independent Schrödinger equation both on a noncommutative space (NCS) and a noncommutative phase space (NCPS), we obtain the energy eigenvalues and eigenfunctions of the relevant Hamiltonian. We derive the electric current whose expectation value gives the QH effect both on a NCS and a NCPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号