首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Liu C  Djuth F  Li X  Chen R  Zhou Q  Shung KK 《Ultrasonics》2012,52(4):497-502
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 × 9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and −6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about −35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.  相似文献   

2.
The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (high intensity focused ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth.  相似文献   

3.

Objective and motivation

The goal of this work was to test experimentally that exposing air bubbles or ultrasound contrast agents in water to amplitude modulated wave allows control of inertial cavitation affected volume and hence could limit the undesirable bioeffects.

Methods

Focused transducer operating at the center frequency of 10 MHz and having about 65% fractional bandwidth was excited by 3 μs 8.5 and 11.5 MHz tone-bursts to produce 3 MHz envelope signal. The 3 MHz frequency was selected because it corresponds to the resonance frequency of the microbubbles used in the experiment. Another 5 MHz transducer was used as a receiver to produce B-mode image. Peak negative acoustic pressure was adjusted in the range from 0.5 to 3.5 MPa. The spectrum amplitudes obtained from the imaging of SonoVueTM contrast agent when using the envelope and a separate 3 MHz transducer were compared to determine their cross-section at the - 6 dB level.

Results

The conventional 3 MHz tone-burst excitation resulted in the region of interest (ROI) cross-section of 2.47 mm while amplitude modulated, dual-frequency excitation with difference frequency of 3 MHz produced cross-section equal to 1.2 mm.

Conclusion

These results corroborate our hypothesis that, in addition to the considerably higher penetration depth of dual-frequency excitation due to the lower attenuation at 3 MHz than that at 8.5 and 11.5 MHz, the sample volume of dual-frequency excitation is also smaller than that of linear 3-MHz method for more spatially confined destruction of microbubbles.  相似文献   

4.
Targeted mechanical cell stimulation has been extensively studied for a better understanding of its effect on cellular mechanotransduction signaling pathways and structures by utilizing a variety of mechanical sources. In this work, an ultrasound-driven single cell stimulation method is thus proposed, and a preliminary study is carried out by comparing the fluorescence intensities representing a change in cell membrane permeability between MDA-MB-435 human HER2+ cancer cells (∼40-50 μm in diameter) and MCF-12F normal cells (∼50-60 μm) in the presence of ultrasound. A 200 MHz single element zinc oxide (ZnO) transducer is employed to generate ultrasound microbeam (UM) whose beamwidth and depth of focus are 9.5 and 60 μm, comparable to typical cell size. The cells in tetramethyl rhodamine methyl ester (TMRM) are interrogated with 200 MHz sinusoidal bursts. The number of cycles per burst is 5 and the pulse repetition frequency (PRF) is 1 kHz. The temporal variation of fluorescence intensity in each cell is measured as a function of input voltage to the transducer (16, 32, and 47 V), and its corresponding fluorescence images are obtained via a confocal microscope. A systematic method for visualizing UM’s focus by adding Rhodamine B to the immersion medium is also proposed to enhance the precision in aiming the beam at an individual cell.Both types of cells exhibit a decrease in the intensity upon UM irradiation. In particular, normal cells show more fluorescence reduction (down to 0.7 in normalized intensity) than cancer cells (∼0.9) under the same excitation condition of the transducer. With UM being turned off, the normalized intensity level in normal cells is slowly increased to 1.1. The cell images taken before and after UM exposure indicate that the intensity reduction is more pronounced in those cells after exposure. Hence the results show the potential of UM as a non-invasive in vitro stimulation tool for facilitating targeted drug delivery and gene transfection as well as for studying cellular mechanotransduction.  相似文献   

5.
Recently, the measurement of phase transfer functions (PTFs) of piezoelectric transducers has received more attention. These PTFs are useful for e.g. coding and interference based imaging methods, and ultrasound contrast microbubble research. Several optical and acoustic methods to measure a transducer’s PTF have been reported in literature. The optical methods require a setup to which not all ultrasound laboratories have access to. The acoustic methods require accurate distance and acoustic wave speed measurements. A small error in these leads to a large error in phase, e.g. an accuracy of 0.1% on an axial distance of 10 cm leads to an uncertainty in the PTF measurement of ±97° at 4 MHz. In this paper we present an acoustic pulse-echo method to measure the PTF of a transducer, which is based on linear wave propagation and only requires an estimate of the wave travel distance and the acoustic wave speed. In our method the transducer is excited by a monofrequency sine burst with a rectangular envelope. The transducer initially vibrates at resonance (transient regime) prior to the forcing frequency response (steady state regime). The PTF value of the system is the difference between the phases deduced from the transient and the steady state regimes. Good agreement, to within 7°, was obtained between KLM simulations and measurements on two transducers in a 1-8 MHz frequency range. The reproducibility of the method was ±10°, with a systematic error of 2° at 1 MHz increasing to 16° at 8 MHz. This work demonstrates that the PTF of a transducer can be measured in a simple laboratory setting.  相似文献   

6.
We study displacement and strain measurement error of dual transducers (two linear arrays, aligned orthogonally and coplanar). Displacements along the beam of each transducer are used to obtain measurements in two-dimensions. Simulations (5 MHz) and experiments (10 MHz) are compared to measurements with a single linear array, with and without angular compounding. Translation simulations demonstrate factors of 1.07 larger and 8.0 smaller biases in the axial and lateral directions respectively, for dual transducers compared to angular compounding. As the angle between dual transducers decreases from 90° to 40°, for 1% compression simulations, the lateral RMS error ranges from 2.1 to 3.9 μm compared to 9 μm with angular compounding. Simulation of dual transducer misalignment of 1 mm and 2° result in errors of less than 9 μm. Experiments demonstrate factors of 3.0 and 5.2 lower biases for dual transducers in the axial and lateral directions respectively compared to angular compounding.  相似文献   

7.
This paper describes the application of continuous-wave (CW) and tone-burst (TB) vibro-acoustography (VA) experiments for imaging a flawed composite plate. For both modes, the ultrasound frequency is set at f1 = 3 MHz and f2 = 3 MHz + ∣Δf∣. The plate was placed at the focus of the transducer and scanned point-by-point over an area of 60 mm by 50 mm on its frontal face with an increment step equal to 0.25 mm/pixel. The resulting acoustic emission amplitude at ∣Δ f∣ is recorded. For the CW mode the difference frequency was set at ∣Δf∣ = 12.9 kHz. For the TB mode, the burst-emitted signal was 100 μs long at a pulse repetition frequency (PRF) of 100 Hz corresponding to bursts of 300 cycles at 3 MHz, and the difference frequency was set at ∣Δf∣ = 44 kHz. The resulting VA images readily show the shape of the flaws. The images also reveal considerable detail of internal substructures such as the fibers used to reinforce the plate. However, the CW VA image shows an artifact caused by the effect of ultrasound standing waves established between the plate and the concave surface of the transducer, resulting in masking some of the flaws. On the other hand, the TB-VA image is free from such artifact. Despite some advantages of using TB-VA, there are some limitations related to this mode. Advantages and limitations of using the two modes are discussed.  相似文献   

8.
Jeong JS  Chang JH  Shung KK 《Ultrasonics》2012,52(6):730-739
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9 MHz frequency sweep range is used for B-mode imaging and 4 MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4 MHz and 8 MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6 MHz imaging signals and two outer elements are only used for transmitting 4 MHz continuous HIFU wave. When the chirp signal and 4 MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4 MHz and 8 MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to −45 dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.  相似文献   

9.
In order to have consistent and repeatable effects of sonodynamic therapy (SDT) on various cancer cells or tissue lesions we should be able to control a delivered ultrasound energy and thermal effects induced. The objective of this study was to investigate viability of rat C6 glioma cells in vitro depending on the intensity of ultrasound in the region of cells and to determine the exposure time inducing temperature rise above 43 °C, which is known to be toxic for cells. For measurements a planar piezoelectric transducer with a diameter of 20 mm and a resonance frequency of 1.06 MHz was used. The transducer generated tone bursts with 94 μs duration, 0.4 duty-cycle and initial intensity ISATA (spatial averaged, temporal averaged) varied from 0.33 W/cm2 to 8 W/cm2 (average acoustic power varied from 1 W to 24 W). The rat C6 glioma cells were cultured on a bottom of wells in 12-well plates, incubated for 24 h and then exposed to ultrasound with measured acoustic properties, inducing or causing no thermal effects leading to cell death. Cell viability rate was determined by MTT assay (a standard colorimetric assay for assessing cell viability) as the ratio of the optical densities of the group treated by ultrasound to the control group. Structural cellular changes and apoptosis estimation were observed under a microscope. Quantitative analysis of the obtained results allowed to determine the maximal exposure time that does not lead to the thermal effects above 43 °C in the region of cells for each initial intensity of the tone bursts used as well as the threshold intensity causing cell death after 3 min exposure to ultrasound due to thermal effects. The averaged threshold intensity was found to be about 5.7 W/cm2.  相似文献   

10.
Wang P  Shen Y  Wang Q 《Ultrasonics》2007,46(2):168-176
In this paper, a novel dynamic filtering method using Gaussian wavelet filters is proposed to remove noise from ultrasound echo signal. In the proposed method, a mother wavelet is first selected with its central frequency (CF) and frequency bandwidth (FB) equal to those of the transmitted signal. The actual frequency of the received signal at a given depth is estimated through the autocorrelation technique. Then the mother wavelet is dilated using the ratio between the transmitted central frequency and the actual frequency as the scale factor. The generated daughter wavelet is finally used as the dynamic filter at this depth. Frequency-demodulated Gaussian wavelet is chosen in this paper because its power spectrum is well-matched with that of the transmitted ultrasound signal. The proposed method is evaluated by simulations using Field II program. Experiments are also conducted out on a standard ultrasound phantom using a 192-element transducer with the center frequency of 5 MHz. The phantom contains five point targets, five circular high scattering regions with diameters of 2, 3, 4, 5, 6 mm respectively, and five cysts with diameters of 6, 5, 4, 3, 2 mm respectively. Both simulation and experimental results show that optimal signal-to-noise ratio (SNR) can be obtained and useful information can be extracted along the depth direction irrespective of the diagnostic objects.  相似文献   

11.
High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (−7.7 dB), THD (−74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the −6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications.  相似文献   

12.

Background

High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the fabrication of conventional backing-layer structure, which requires a pitch (distance between the centers of two adjacent elements) of half wavelength in medium, is really a great challenge.

Objective and method

Here we present an alternative buffer-layer structure with a silicon lens for volumetric imaging. The requirement for the size of the pitch is less critical for this structure, making it possible to fabricate high-frequency (100 MHz) ultrasonic linear array transducers. Using silicon substrate also makes it possible to integrate the arrays with IC (Integrated Circuit). To compare with the conventional backing-layer structure, a finite element tool, COMSOL, is employed to investigate the performances of acoustic beam focusing, the influence of pitch size for the buffer-layer configuration, and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance.

Results

For a 100 MHz 10-element array of buffer-layer structure, the ultrasound beam in azimuth plane in water could be electronically focused to obtain a spatial resolution (a half-amplitude width) of 86 μm at the focal depth. When decreasing from half wavelength in silicon (42 μm) to half wavelength in water (7.5 μm), the pitch sizes weakly affect the focal resolution. The lateral spatial resolution is increased by 4.65% when the pitch size decreases from 42 μm to 7.5 μm. The crosstalk between adjacent elements at the central frequency is, respectively, −95 dB, −39.4 dB, and −60.5 dB for the 10-element buffer, 49-element buffer and 49-element backing arrays. Additionally, the electrical impedance magnitudes for each structure are, respectively, 4 kΩ, 26.4 kΩ, and 24.2 kΩ, which is consistent with calculation results using Krimholtz, Leedom, and Matthaei (KLM) model.

Conclusion

These results show that the buffer-layer configuration is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays dedicated to volumetric imaging.  相似文献   

13.

Background

High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the structure design and fabrication of the kerfed ultrasonic array is quite challenging when very high frequency (?100 MHz) is required.

Objective and method

Here we investigate the effect of kerf depth on the performances of array transducers. A finite element tool, COMSOL, is employed to simulate the properties of acoustic field and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. Furthermore, Inductively Coupled Plasma (ICP) deep etching process is used to etch 36°/Y-cut lithium niobate (LiNbO3) crystals and the limitation of etching aspect ratio is studied. Several arrays with different profiles are realized under optimized processes. At last, arrays with a pitch of 25 μm and 40 μm are fabricated and characterized by a network analyzer.

Results

Kerf depth plays an important role in the performance of the transducer array. The crosstalk is proportional to kerf depth. When kerf depth is more than 13 μm, the array with crosstalk less than −20 dB, which is acceptable for the real application, could provide a desired resolution. Compared to beam focusing, kerf depth exhibits more effect on the beam steering/focusing. The lateral pressure distribution is quantitatively summarized for four types of arrays with different kerf depth. The results of half-cut array are similar to those of the full-cut one in both cases of focusing and steering/focusing. The Full-Width-at-Half-Maximum (FWHM) is 55 μm for the half-cut array, and is 42 μm for the full-cut one. The 5-μm-cut array, suffering from severe undesired lobes, demonstrates similar behaviors with the no-cut one. ICP process is used to etch the 36°/Y-cut LiNbO3 film. The aspect ratio of etching profile increases with the kerf width decreasing till it stops by forming a V-shaped groove, and the positive tapered profile angle ranges between 62° and 80°. If the mask selectivity does not limit the process in terms of achievable depth, the aspect ratio is limited to values around 1.3. The measurement shows the electrical impedance and crosstalk are consistent with the numerical calculation.

Conclusion

The numerical results indicate that half-cut array is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays. In fact, the minimum pitch that could be obtained is around 25 μm, equivalent to a pitch of 1.6λ, with a kerf depth of 16 μm under the optimized ICP parameters.  相似文献   

14.
Miniature flat ultrasound transducers have shown to be effective for a large variety of thermal therapies, but the associated superficial heating implicates developing original strategies in order to extend therapeutic depth. The goal of the present paper is to use ultrasound contrast agents (UCA) to increase remote attenuation and heating. Theoretical simulations demonstrated that increasing attenuation from 0.27 to 0.8 Np/cm at 10 MHz beyond a distance of 18 mm from the transducer should result in longer thermal damages due to protein coagulation in a tissue mimicking phantom. Contrast agents (BR14, Bracco, Plan-les-Ouates, Switzerland) were embedded in thermo-sensitive gel and attenuations ranging from 0.27 to 1.33 Np/cm were measured at 10 MHz for concentrations of BR14 between 0 and 4.8%. Thermal damages were then induced in several gels, which had different layering configurations. Thermal damages, 12.8 mm in length, were obtained in homogeneous gels. When mixing contrast agents at a concentration of 3.2% beyond a first 18 mm-thick layer of homogeneous gel, the thermal damages reached 21.5 mm in length. This work demonstrated that contrast agents can be used for increasing attenuation remotely and extending therapeutic depth induced by a non-focused transducer. Additional work must be done in vivo in order to verify the remote-only distribution of bubbles and associated increase in attenuation.  相似文献   

15.
Iula A  De Santis M 《Ultrasonics》2011,51(6):683-688
In this work the moving ultrasound linear array technique has been used to perform 3D echographic images of different human hands, in order to evaluate this technique to biometric recognition purposes. An automated set up, based on a commercial echographic machine provided with a high frequency (12 MHz) linear array, has been built up. The probe is moved in the direction orthogonal to the array and at each step a B-scan is performed and stored to form a 3D matrix representing the under skin hand volume.B-scan and C-scan images of the hand of different users were analysed and compared. The results have shown that, in the analysed region (about 10 mm under the palm skin), there are several anatomic elements (including hand bones, bending tendons, muscle tissue, blood vessels) that can be exploited for measurements of biometric parameters.The characteristics of the proposed technique are compared with those of the 2D optical hand geometry, which is a well established biometric technique, and its possible advantages are underlined and discussed.  相似文献   

16.
The threshold filter is a frequently used technique in ultrasound B-scan to reject the small echoes contributed from backscattering that blur the tissue interface and reduce the image contrast. Note that using the threshold based on one value would simultaneously destroy local waveform features of the reflection echoes with amplitudes larger than threshold value. To resolve this problem, we developed an adaptive threshold filter based on the noise-assisted empirical mode decomposition (EMD). Computer simulations at 7.5 MHz using a single-element transducer with a bandwidth of 60% and a pulselength of 0.5 μs were carried out to explore the feasibility of the algorithm. Image measurements on the carotid artery using a 7.5 MHz, 128 elements, 1D linear array transducer with the same characteristics as those in simulations were used to verify the performance of the algorithm in practice. Compared to the result from the conventional threshold technique, the adaptive threshold filter is able to successfully suppress the smaller backscattering signals without changing the local waveform features of the preserved significant echoes due to refection.  相似文献   

17.
Phospholipid encapsulated microbubbles are widely employed as clinical diagnostic ultrasound contrast agents in the 1–5 MHz range, and are increasingly employed at higher ultrasound transmit frequencies. The stiffness and viscosity of the encapsulating “shells” have been shown to play a central role in determining both the linear and nonlinear response of microbubbles to ultrasound. At lower frequencies, recent studies have suggested that shell properties can be frequency dependent. At present, there is only limited knowledge of how the viscoelastic properties of phospholipid shells scale at higher frequencies. In this study, four batches of in-house phospholipid encapsulated microbubbles were fabricated with decreasing volume-weighted mean diameters of 3.20, 2.07, 1.82 and 1.61 μm. Attenuation experiments were conducted in order to assess the frequency-dependent response of each batch, resulting in resonant peaks in response at 4.2, 8.9, 12.6 and 19.5 MHz, respectively. With knowledge of the size measurements, the attenuation spectra were then fitted with a standard linearized bubble model in order to estimate the microbubble shell stiffness Sp and shell viscosity Sf, resulting in a slight increase in Sp (1.53–1.76 N/m) and a substantial decrease in Sf (0.29 × 106–0.08 × 10−6 kg/s) with increasing frequency. These results performed on a single phospholipid agent show that frequency dependent shell properties persist at high frequencies (up to 19.5 MHz).  相似文献   

18.
The objective of the study was to acoustically characterize trisacryl polymeric microparticles (TMP), which are derived from biocompatible embolic agents.With significant acoustic properties, these polymeric particles could be potentially used as targeted ultrasound contrast agents, directed towards a specific site, with ligands conjugation on the polymeric network surface. In the in vitro study, a pulser/receiver (PRF of 1 kHz), associated to different transducers (5, 10 and 15 MHz), was used to measure the acoustic properties of the TMP inserted in a Couette flow device. Acoustic characterization according to TMP concentration (0.12-15.63 mg/ml), frequency (4.5-17 MHz, defined by each transducer bandwidth), ultrasound pressure (137-378 kPa) and exposure time (0-30 min) was conducted. Particle attenuation was also evaluated according to TMP concentration and emission frequency. Backscattering increased non linearly with concentration and maximum enhancement was of 16.4 dB ± 0.89 dB above 7.8 mg/ml. This parameter was found non-linear with increasing applied pressure and no harmonic oscillation could be noticed. Attenuation reached approximately 1.4 dB/cm at 15 MHz and for the 15.6 mg/ml suspension.The TMP have revealed in vitro ultrasound properties comparable to those observed with known contrast agents, studied in similar in vitro systems. However, such set-ups combined with a rather aqueous suspending medium, have some limitations and further investigations need now to be conducted to approach in vivo conditions in terms of flow and blood environment.  相似文献   

19.
The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (−0.3 dB) and THD (−62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (−1.4 dB), THD (−56.0 dB) and RT (119 ns)) at 70 MHz. The −6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption.  相似文献   

20.

Introduction

Elastic modulus estimation may be an important clinical criterion, as it seems to affect such eye parameters as intraocular pressure, ocular pulsation, blood flow, effect of topical medications, and post-refractive surgery complications. The purpose of this study was to examine the differences in elasticity in the ocular axial length, posterior wall thickness (posterior pole), and retina-choroid thickness under normal and aged-related macular degeneration (AMD) conditions in the human eye by directly estimating the elastic modulus with sequential and noninvasive ultrasound image processing.

Materials and Methods

In this study, 25 healthy subjects and 20 patients with non-neovascular AMD participated in the experiment. The deformation of the ocular axial length, posterior wall thickness and retina-choroid complex thickness was captured using high-resolution ultrasonography before and after loading. The B-mode (20 MHz) and A-mode (8 MHz) frames were obtained and processed with an echo tracking technique. The elastic modulus was estimated using changes in ocular axial length, posterior wall thickness and retina-choroid complex thickness and with applied stress measurements.

Results

There was a significant difference (p < 0.05) in the ocular axial length elastic modulus between the AMD and healthy subjects (AMD patients: 95.165 ± 26.431 kPa, vs. healthy subjects: 49.539 ± 25.867 kPa). Moreover, there was a statistically significant difference (p < 0.05) in the posterior wall thickness elastic modulus between AMD patients and healthy subjects (AMD patients: 50.519 ± 12.295 kPa, vs. healthy subjects: 20.519 ± 11.827 kPa). However, no statistically significant difference (p-value > 0.05) was found in the retina-choroid complex elastic modulus between the two groups (AMD patients: 20.134 ± 3.898 kPa, vs. healthy subjects: 15.630 ± 4.250 kPa).

Conclusion

Although the results were obtained examining a relatively low number of patients, it would appear that noninvasive ultrasound estimation of the local elastic moduli of ocular axial length and posterior wall thickness is suited to aid in detection of the non-exudative AMD thus manifesting its potential as a screening tool in symptom-free individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号