首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Geometry and bonding energy analysis of M–S2O bonds in the metal‐disulfur monoxide complexes [(PMe3)2M(S2O)] of nickel, palladium, and platinum were investigated at DFT, DFT‐D3, and DFT‐D3(BJ) methods using three different functionals (BP86, PBE, and TPSS). The TPSS/DFT‐D3(BJ) yields better geometry, while the BP86 geometry is least accurate for studied complexes. The geometry of platinum complex optimized at TPSS/DFT‐D3(BJ) level is in excellent agreement with the available experimental values. The M–S bonds are shorter than the M–S(O) bonds. The Mayer bond orders suggest the presence of M–S and M–S(O) single bonds. Both the M–S and M–S(O) bond lengths vary with the density functionals as TPSS‐D3(BJ) < TPSS < PBE < BP86. The Hirshfeld charge distribution indicates that the overall charge flows from metal fragment to [S2O]. The Ni–S2O bond has greater degree of covalent character than the ionic. The contribution of dispersion interactions is large in computing accurate bond dissociation energies between the interacting fragments. The BDEs are largest for the functional TPSS and smallest for the functional BP86. The DFT‐D3 dispersion corrections to the BDEs between the metal fragments [(PMe3)2M] and ligand fragment [(S2O)] for the TPSS functional are in the range 7.1–7.3 kcal · mol–1, which are smaller than the corresponding DFT‐D3(BJ) dispersion corrections (9.4–10.6 kcal · mol–1).  相似文献   

2.
Treatment of the salt [PPh4]+[Cp*W(S)3]? ( 6 ) with allyl bromide gave the neutral complex [Cp*W(S)2S‐CH2‐CH?CH2] ( 7 ). The product 7 was characterized by an X‐ray crystal structure analysis. Complex 7 features dynamic NMR spectra that indicate a rapid allyl automerization process. From the analysis of the temperature‐dependent NMR spectra a Gibbs activation energy of ΔG (278 K)≈13.7±0.1 kcal mol?1 was obtained [ΔH≈10.4±0.1 kcal mol?1; ΔS≈?11.4 cal mol?1 K?1]. The DFT calculation identified an energetically unfavorable four‐membered transition state of the “forbidden” reaction and a favorable six‐membered transition state of the “Cope‐type” allyl rearrangement process at this transition‐metal complex core.  相似文献   

3.
The C-2—N bond of 2-N,N-dimethylaminopyrylium cations has a partial π character due to the conjugation of the nitrogen lone-pair with the ring. The values of ΔG, ΔH, ΔS parameters related to the corresponding hindered rotation have been determined by 13C NMR total bandshape analysis. This conjugation decreases the electrophilic character of carbon C-4 so that the displacement of the alkoxy group is no longer possible. Such a hindered rotation also exists in 4-N,N-dimethylaminopyrylium cations and the corresponding ΔG parameters have been evaluated. Comparison of these two cationic species shows that hindered rotation around the C—N bond is larger in position 4 than in position 2. Furthermore, the barrier to internal rotation around the C-2? N bond decreases with increasing electron donating power of the substituent at position 4. ΔG values decreases from 19.1 kcal mol?1 (79.9 kJ mol?1) to 12.6 kcal mol?1 (52.7 kJ mol?1) according to the following sequence for the R-4 substituents: -C6H5, -CH3, -OCH3, -N(CH3)2.  相似文献   

4.
The oxidative addition of BF3 to a platinum(0) bis(phosphine) complex [Pt(PMe3)2] ( 1 ) was investigated by density functional calculations. Both the cis and trans pathways for the oxidative addition of BF3 to 1 are endergonic (ΔG°=26.8 and 35.7 kcal mol?1, respectively) and require large Gibbs activation energies (ΔG°=56.3 and 38.9 kcal mol?1, respectively). A second borane plays crucial roles in accelerating the activation; the trans oxidative addition of BF3 to 1 in the presence of a second BF3 molecule occurs with ΔG° and ΔG° values of 10.1 and ?4.7 kcal mol?1, respectively. ΔG° becomes very small and ΔG° becomes negative. A charge transfer (CT), F→BF3, occurs from the dissociating fluoride to the second non‐coordinated BF3. This CT interaction stabilizes both the transition state and the product. The B?F σ‐bond cleavage of BF2ArF (ArF=3,5‐bis(trifluoromethyl)phenyl) and the B?Cl σ‐bond cleavage of BCl3 by 1 are accelerated by the participation of the second borane. The calculations predict that trans oxidative addition of SiF4 to 1 easily occurs in the presence of a second SiF4 molecule via the formation of a hypervalent Si species.  相似文献   

5.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

6.
The degradation pathways of highly active [Cp*Ir(κ2-N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO3), 2 undergoes partial protonation of the amide moiety, inducing rapid κ2-N,N to κ2-N,O ligand isomerization. Consistently, DFT modeling on the simpler complex 1 showed that the κ2-N,N key intermediate of FA dehydrogenation ( INH ), bearing a N-protonated pica, can easily transform into the κ2-N,O analogue ( INH2 ; ΔG≈11 kcal mol−1, ΔG ≈−5 kcal mol−1). Intramolecular hydrogen liberation from INH2 is predicted to be rather prohibitive (ΔG≈26 kcal mol−1, ΔG≈23 kcal mol−1), indicating that FA dehydrogenation should involve mostly κ2-N,N intermediates, at least at relatively high pH. Under FA dehydrogenation conditions, 2 was progressively consumed, and the vast majority of the Ir centers (58 %) were eventually found in the form of Cp*-complexes with a pyridine-amine ligand. This likely derived from hydrogenation of the pyridine-carboxiamide via a hemiaminal intermediate, which could also be detected. Clear evidence for ligand hydrogenation being the main degradation pathway also for 1 was obtained, as further confirmed by spectroscopic and catalytic tests on the independently synthesized degradation product 1 c . DFT calculations confirmed that this side reaction is kinetically and thermodynamically accessible.  相似文献   

7.
The relative energies of azaphosphiridine and its isomers, the ring stability towards valence isomerization, and the ring strain, as well as the kinetics and thermodynamics of possible ring‐opening reactions of PIII derivatives ( 1 – 5 ) and PV chalcogenides ( 6 – 9 ; O to Te), were studied at high levels of theory (up to CCSD(T)). The barrier to inversion at the nitrogen atom in the trimethyl‐substituted PIII derivative 5 increases from 12.11 to 15.25 kcal mol?1 in the P‐oxide derivative 6 (PV); the relatively high barrier to inversion at the phosphorus in 5 (75.38 kcal mol?1) points to a configurationally stable center (MP2/def2‐TZVPP//BP86/def2‐TZVP). The ring strain for azaphosphiridine 5 (av. 22.6 kcal mol?1) was found to increase upon Poxidation ( 6 ) (30.8 kcal mol?1; same level of theory). Various ring‐bond‐activation processes were studied: N‐protonation of PIII ( 5 ) and PV ( 6 , 7 ) derivatives leads to highly activated species that readily undergo P? N bond cleavage. In contrast, metal chlorides such as LiCl, CuCl, CuCl2, BeCl2, BCl3, AlCl3, TiCl3, and TiCl4 show little P? N bond activation in 5 and 7 . Remarkably, TiCl3 selectively activates the C? N bond, and induces stronger bond activation for PV ( 6, 7 ) than for PIII azaphosphiridines ( 5 ). The ring‐expanding rearrangement of PV azaphosphiridines 6 – 9 to yield PIII 1,3,2‐chalcogena‐azaphosphetidines 32 a – d is predicted to be preferred for the heavier chalcogenides 7 – 9 , but not for the P‐oxide 6 . The first comparative analysis of three bond strength parameters is presented: 1) the electron density at bond critical points, 2) Wiberg’s bond index, and 3) the relaxed force constant. This reveals the usefulness of these parameters in assessing the degree of ring bond activation.  相似文献   

8.
Oxidation of Li/X phosphinidenoid complex 2 , obtained via selective deprotonation from the P‐H precursor 1 , with [Ph3C]BF4 led to the formation of two P‐F substituted diorganophosphane complexes 6 , 7 ; the latter tautomer 7 formed via H‐shift from 6 . In contrast, oxidation of 2 with [(p‐Tol)3C]BF4 led to three major and one minor intermediates at low temperature, which we tentatively assign to two pairs of P‐C atropisomers 10a , a′ and 10c , c′ and which differ by the relative orientations of their CH(SiMe3)2 and W(CO)5 groups. Conversion of all isomers led finally to complex 11 having a ligand with a long P? C bond to the central trityl* carbon atom, firmly established by single‐crystal X‐ray analysis. DFT calculations at the B3LYP/def2‐TZVPP//BP86/def2‐TZVP level of theory on real molecular entities revealed the structures of the in situ formed combined singlet diradicals ( 4 + 5 and 5 + 9 ) and the nature of intermediates on the way to the final product, complex 11 . Remarkable is that all isomers of 11 possess relative energies in the narrow energy regime of about 20 kcal mol?1. A preliminary study revealed that complex 11 undergoes selective P? C bond cleavage at 75 °C in toluene solution.  相似文献   

9.
A family of seven cationic gold complexes that contain both an alkyl substituted π‐allene ligand and an electron‐rich, sterically hindered supporting ligand was isolated in >90 % yield and characterized by spectroscopy and, in three cases, by X‐ray crystallography. Solution‐phase and solid‐state analysis of these complexes established preferential binding of gold to the less substituted C?C bond of the allene and to the allene π face trans to the substituent on the uncomplexed allenyl C?C bond. Kinetic analysis of intermolecular allene exchange established two‐term rate laws of the form rate=k1[complex]+k2[complex][allene] consistent with allene‐independent and allene‐dependent exchange pathways with energy barriers of ΔG1=17.4–18.8 and ΔG2=15.2–17.6 kcal mol?1, respectively. Variable temperature (VT) NMR analysis revealed fluxional behavior consistent with facile (ΔG=8.9–11.4 kcal mol?1) intramolecular exchange of the allene π faces through η1‐allene transition states and/or intermediates that retain a staggered arrangement of the allene substituents. VT NMR/spin saturation transfer analysis of [{P(tBu)2o‐binaphthyl}Au(η2‐4,5‐nonadiene) ]+SbF6? ( 5 ), which contains elements of chirality in both the phosphine and allene ligands, revealed no epimerization of the allene ligand below the threshold for intermolecular allene exchange (ΔG298K=17.4 kcal mol?1), which ruled out the participation of a η1‐allylic cation species in the low‐energy π‐face exchange process for this complex.  相似文献   

10.
Comprehensive mechanistic studies on the enantioselective aldol reaction between isatin ( 1 a ) and acetone, catalyzed by L ‐leucinol ( 3 a ), unraveled that isatin, apart from being a substrate, also plays an active catalytic role. Conversion of the intermediate oxazolidine 4 into the reactive syn‐enamine 6 , catalyzed by isatin, was identified as the rate‐determining step by both the calculations (ΔG=26.1 kcal mol?1 for the analogous L ‐alaninol, 3 b ) and the kinetic isotope effect (kH/kD=2.7 observed for the reaction using [D6]acetone). The subsequent reaction of the syn‐enamine 6 with isatin produces (S)‐ 2 a (calculated ΔG=11.6 kcal mol?1). The calculations suggest that the overall stereochemistry is controlled by two key events: 1) the isatin‐catalyzed formation of the syn‐enamine 6 , which is thermodynamically favored over its anti‐rotamer 7 by 2.3 kcal mol?1; and 2) the high preference of the syn‐enamine 6 to produce (S)‐ 2 a on reaction with isatin ( 1 a ) rather than its enantiomer (ΔΔG=2.6 kcal mol?1).  相似文献   

11.
A variety of asymmetrically donor–acceptor‐substituted [3]cumulenes (buta‐1,2,3‐trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol?1, in the range of the barriers for rotation around sterically hindered single bonds. The central C?C bond of the push–pull‐substituted [3]cumulene moiety is shortened down to 1.22 Å as measured by X‐ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor–acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition‐retroelectrocyclization (CA–RE) cascade characteristic of donor‐polarized acetylenes.  相似文献   

12.
The radical trifluoromethylation of thiophenol in condensed phase applying reagent 1 (3,3‐dimethyl‐1‐(trifluoromethyl)‐1λ3,2‐benziodoxol) has been examined by both theoretical and experimental methodologies. On the basis of ab initio molecular dynamics and metadynamics we show that radical reaction mechanisms favourably compete with polar ones involving the S‐centred nucleophile thiophenol, their free energies of activation, ΔF, lying between 9 and 15 kcal mol?1. We further show that the origin of the proton activating the reagent is important. Hammett plot analysis reveals intramolecular protonation of 1 , thus generating negative charge on the sulfur atom in the rate‐determining step. The formation of a CF3 radical can be thermally induced by internal dissociative electron transfer, its activation energy, ΔF, amounting to as little as 10.8 and 2.8 kcal mol?1 for reagent 1 and its protonated form 2 , respectively. The reduction of the iodine atom by thiophenol occurs either subsequently or in a concerted fashion.  相似文献   

13.
Herein, we report the synthesis and characterization of two organozinc complexes that contain symmetrical phenalenyl (PLY)‐based N,N‐ligands. The reactions of phenalenyl‐based ligands with ZnMe2 led to the formation of organozinc complexes [N(Me),N(Me)‐PLY]ZnMe ( 1 ) and [N(iPr),N(iPr)‐PLY]ZnMe ( 2 ) under the evolution of methane. Both complexes ( 1 and 2 ) were characterized by NMR spectroscopy and elemental analysis. The solid‐state structures of complexes 1 and 2 were determined by single‐crystal X‐ray crystallography. Complexes 1 and 2 were used as catalysts for the intramolecular hydroamination of unactivated primary and secondary aminoalkenes. A combined approach of NMR spectroscopy and DFT calculations was utilized to obtain better insight into the mechanistic features of the zinc‐catalyzed hydroamination reactions. The progress of the catalysis for primary and secondary aminoalkene substrates with catalyst 2 was investigated by detailed kinetic studies, including kinetic isotope effect measurements. These results suggested pseudo‐first‐order kinetics for both primary and secondary aminoalkene activation processes. Eyring and Arrhenius analyses for the cyclization of a model secondary aminoalkene substrate afforded ΔH=11.3 kcal mol?1, ΔS=?35.75 cal K?1 mol?1, and Ea=11.68 kcal mol?1. Complex 2 exhibited much‐higher catalytic activity than complex 1 under identical reaction conditions. The in situ NMR experiments supported the formation of a catalytically active zinc cation and the DFT calculations showed that more active catalyst 2 generated a more stable cation. The stability of the catalytically active zinc cation was further supported by an in situ recycling procedure, thereby confirming the retention of catalytic activity of compound 2 for successive catalytic cycles. The DFT calculations showed that the preferred pathway for the zinc‐catalyzed hydroamination reactions is alkene activation rather than the alternative amine‐activation pathway. A detailed investigation with DFT methods emphasized that the remarkably higher catalytic efficiency of catalyst 2 originated from its superior stability and the facile formation of its cation compared to that derived from catalyst 1 .  相似文献   

14.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

15.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

16.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

17.
The equilibrium association free enthalpies ΔGa for typical supramolecular complexes in solution are calculated by ab initio quantum chemical methods. Ten neutral and three positively charged complexes with experimental ΔGa values in the range 0 to ?21 kcal mol?1 (on average ?6 kcal mol?1) are investigated. The theoretical approach employs a (nondynamic) single‐structure model, but computes the various energy terms accurately without any special empirical adjustments. Dispersion corrected density functional theory (DFT‐D3) with extended basis sets (triple‐ζ and quadruple‐ζ quality) is used to determine structures and gas‐phase interaction energies (ΔE), the COSMO‐RS continuum solvation model (based on DFT data) provides solvation free enthalpies and the remaining ro‐vibrational enthalpic/entropic contributions are obtained from harmonic frequency calculations. Low‐lying vibrational modes are treated by a free‐rotor approximation. The accurate account of London dispersion interactions is mandatory with contributions in the range ?5 to ?60 kcal mol?1 (up to 200 % of ΔE). Inclusion of three‐body dispersion effects improves the results considerably. A semilocal (TPSS) and a hybrid density functional (PW6B95) have been tested. Although the ΔGa values result as a sum of individually large terms with opposite sign (ΔE vs. solvation and entropy change), the approach provides unprecedented accuracy for ΔGa values with errors of only 2 kcal mol?1 on average. Relative affinities for different guests inside the same host are always obtained correctly. The procedure is suggested as a predictive tool in supramolecular chemistry and can be applied routinely to semirigid systems with 300–400 atoms. The various contributions to binding and enthalpy–entropy compensations are discussed.  相似文献   

18.
The synthesis and study of a library of cyclic (aryl)(amido)carbenes (CArAmCs), which represent a class of electrophilic NHCs that feature low calculated singlet‐triplet gaps (ΔEST=19.9 kcal mol?1; B3LYP/def2‐TZVP) and exhibit reactivity profiles expected from triplet carbenes, are described. The electrophilic properties of the CArAmCs were quantified by analyzing their respective selenium adducts, which exhibited the largest downfield 77Se NMR chemical shifts (up to 1645 ppm) measured for any NHC derivative known to date, as well as their Ir carbonyl complexes, from which large Tolman electronic parameter (TEP) values (up to 2064 cm?1) were ascertained. The CArAmCs were found to engage in reactions that are typically observed with triplet carbenes, including C?H insertions, [2+1] cycloadditions with alkenes as well as alkynes, and spontaneous oxidation upon exposure to oxygen.  相似文献   

19.
Restricted rotation about the naphthalenylcarbonyl bonds in the title compounds resulted in mixtures of cis and trans rotamers, the equilibrium and the rotational barriers depending on the substituents. For 2,7-dimethyl-1,8-di-(p-toluoyl)-naphthalene (1) ΔH° = 3.66 ± 0.14 kJ mol?1, ΔS° = 1.67 ± 0.63 J mol?1 K?1, ΔHct = 55.5 ± 1.3 kJ mol?1, ΔHct = 51.9 ± 1.3 kJ mol?1, ΔSct = ?41.3±4.1 J mol?1 K?1 and ΔSct = ?42.9±4.1 J mol?1 K?1. The rotation about the phenylcarbonyl bond requires ΔH = ?56.9±4.4 kJ mol?1 and ΔS = ?20.5±15.3 J mol?1 K?1 for the cis rotamer, and ΔH = 43.5Δ0.4 kJ mol?1 and ΔS =± ?22.4Δ1.3 J mol?1 K?1 for the trans rotamer. The role of electronic factors is likely to be virtually the same for both these rotamers but steric interaction between the two phenyl rings occurs in the cis rotamer only. Hence, the difference of the activation enthalpies obtained for the cis and trans rotamers, ΔΔH?1 = 13.4 kJ mol?1, provides a basis for the estimation of the role of steric factors in this rotation. For the tetracarboxylic acid 2 and its tetramethyl ester 3 the equilibrium is even more shifted towards the trans form because of enhanced steric and electrostatic interactions between the substituents in the cis form. The barriers for the rotation around the phenylcarbonyl bond and the cis-trans isomerization are lowered; an explanation for this result is presented.  相似文献   

20.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号