首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A Pd‐catalyzed three‐component carbonylative‐annulation of 1‐hydroxy‐o‐carborane, internal alkyne and carbon monoxide has been achieved via direct and regioselective cage B?H activation. A class of C,B‐substituted carborano‐coumarin derivatives with potential applications in pharmaceuticals were facilely prepared in moderate to high yields with excellent chemoselectivity and regioselectivity. A plausible reaction mechanism including CO insertion, electrophilic B?H metalation, alkyne insertion and reductive elimination was proposed.  相似文献   

2.
A fundamentally novel approach to bioactive quinolizinones is based on the palladium‐catalyzed intramolecular cyclocarbonylation of allylamines. [Pd(Xantphos)I2], which features a very large bite angle, has been found to facilitate the rapid carbonylation of azaarene‐substituted allylamines into bioactive quinolizinones in good to excellent yields. This transformation represents the first dearomative carbonylation and is proposed to proceed by palladium‐catalyzed C? N bond activation, dearomatization, CO insertion, and a Heck reaction.  相似文献   

3.
Density functional theory (DFT) calculations have been performed to study the mechanism of the recently reported Co‐catalyzed ligand‐controlled hydroarylation of styrenes as a means of preparing 1,1‐ or 1,2‐diarylalkanes. The present study corroborates the previously proposed three‐step mechanism, comprising C? H activation (C? H oxidative addition), styrene insertion, and reductive elimination. In the C? H activation and reductive elimination steps, our calculations suggest that styrene does not coordinate to the Co center. In the insertion step, styrene is inserted into the Co? H bond rather than the Co? C bond. Furthermore, the rate‐ and regiodetermining step is found to be C? C reductive elimination. It is significant that the regioselectivity observed experimentally has been successfully reproduced by our calculations. More importantly, in analyzing the origin of the ligand‐controlled regioselectivity, we have found that the steric effects of different ligands mainly determine the observed regioselectivity. Both the shape (i.e., “umbrella‐up” or “umbrella‐down”) and bulkiness of the ligand contribute to the steric effect.  相似文献   

4.
Cu‐catalyzed alkylboration of alkenes with bis(pinacolato)diboron ((Bpin)2) and alkyl halides provides a ligand‐controlled regioselectivity‐switchable method for the construction of complex boron‐containing compounds. Here, we employed DFT methods to elucidate the mechanistic details of this reaction and the origin of the different regioselectivity induced by Xantphos and Cy‐Xantphos. The calculation results reveal that the catalytic cycle mainly proceeds through the migratory insertion of alkenes on Cu‐Bpin complex, the oxidative addition of alkyl halides, and the reductive elimination of a C?C bond. Meanwhile, the rate‐ determining step is the oxidative addition of alkyl halides and the regioselectivity‐determining step is the migratory insertion of alkenes. The bulky cyclohexyl group of Cy‐Xantphos facilitates the approach of the substituents of alkenes to Bpin in the migratory insertion step and thus leads to the Markovnikov products. The less bulky phenyl group on Xantphos prefers keeping the substituents of alkenes away from the Bpin moiety in the migratory insertion step and thus results in anti‐Markovnikov products.  相似文献   

5.
A novel palladium‐catalyzed C? H double carbonylation introduces two adjacent carbonyl groups for the synthesis of isatins from readily available anilines. The reaction proceeds under atmospheric pressure of CO with high regioselectivity and without any additives. Density functional theory investigations indicate that the palladium‐catalyzed double carbonylation catalytic cycle is plausible.  相似文献   

6.
DFT calculations have been performed on the palladium‐catalyzed carboiodination reaction. The reaction involves oxidative addition, alkyne insertion, C?N bond cleavage, and reductive elimination. For the alkylpalladium iodide intermediate, LiOtBu stabilizes the intermediate in non‐polar solvents, thus promoting reductive elimination and preventing β‐hydride elimination. The C?N bond cleavage process was explored and the computations show that PPh3 is not bound to the Pd center during this step. Experimentally, it was demonstrated that LiOtBu is not necessary for the oxidative addition, alkyne insertion, or C?N bond cleavage steps, lending support to the conclusions from the DFT calculations. The turnover‐limiting steps were found to be C?N bond cleavage and reductive elimination, whereas oxidative addition, alkyne insertion, and formation of the indole ring provide the driving force for the reaction.  相似文献   

7.
The ruthenium‐ and rhodium‐catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O?H deprotonation/C(sp2)?H bond cleavage through a concerted metalation–deprotonation mechanism/migratory insertion of the alkyne into the M?C bond to deliver the eight‐membered metallacycle. However, the dearomatization through the originally proposed enol–keto tautomerization/C?C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight‐membered metallacycle through rotation of the C?C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C?C coupling between the carbene carbon atom and the carbon atom of the 2‐naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal [5+2] cycloaddition in the rhodium‐catalyzed oxidative annulation of 2‐vinylphenols with alkynes. The calculations show that compared with the case of 2‐alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal [5+2] cycloaddition.  相似文献   

8.
The elementary reactions leading to the formation of the first carbon–carbon bond during early stages of the zeolite‐catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C?C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid‐catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol?1 for the formation of the first C?C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms.  相似文献   

9.
A straightforward method for the synthesis of highly functionalized vinylarenes through palladium‐catalyzed, norbornene‐mediated C?H activation/carbene migratory insertion is described. Extension to a one‐pot procedure is also developed. Furthermore, this method can also be used to generate polysubstituted bicyclic molecules. The reaction proceeds under mild conditions to give the products in satisfactory yields using readily available starting materials. This is a Catellani–Lautens reaction that incorporates different types of coupling partners. Additionally, this reaction is the first to demonstrate the possibility of combining Pd‐catalyzed insertion of diazo compounds and Pd‐catalyzed C?H activation.  相似文献   

10.
Cp*‐free cobalt‐catalyzed alkyne annulations by C?H/N?H functionalizations were accomplished with molecular O2 as the sole oxidant. The user‐friendly oxidase strategy proved viable with various internal and terminal alkynes through kinetically relevant C?H cobaltation, providing among others step‐economical access to the anticancer topoisomerase‐I inhibitor 21,22‐dimethoxyrosettacin. DFT calculations suggest that electronic effects control the regioselectivity of the alkyne insertion step.  相似文献   

11.
Directly utilizing a chemical feedstock to construct valuable compounds is an attractive prospect in organic synthesis. In particular, the combination of C(sp3)?H activation and oxidative carbonylation involving alkanes and CO gas is a promising and efficient method to synthesize carbonyl derivatives. However, due to the high C?H bond dissociation energy and low polarity of unactivated alkanes, the carbonylation of unactivated C(sp3)?H bonds still remains a great challenge. In this work, we introduce a palladium‐catalyzed radical oxidative alkoxycarbonylation of alkanes to prepare numerous alkyl carboxylates. Various alkanes and alcohols were compatible, generating the desired products in up to 94 % yield. Remarkably, ethane, a constituent of natural gas, could be employed as a substrate under the standard reaction conditions. Preliminary mechanistic studies revealed a probable palladium‐catalyzed radical process.  相似文献   

12.
In this work, we describe a palladium‐catalyzed intermolecular O acylation of α‐diazoesters with ortho‐bromobenzaldehydes. The C(sp2)?H bond activation of the aldehyde is enabled by migratory insertion of a palladium carbene intermediate. The diazoesters act as modular three‐atom units to build up key seven‐membered palladacycles, which are transformed into a variety of isocoumarin derivatives upon reductive elimination. Mechanistic experiments and DFT calculations provide insight into the reaction pathway.  相似文献   

13.
Direct C? H phenylation of 2‐ethylthiophene and 2‐chlorothiophene with PhPdI(bipy) complex to form either the corresponding 4‐phenyl or 5‐phenylthiophene derivative is studied under stoichiometric conditions using various Lewis acids as additives. It is shown that reactions occur via the corresponding cationic Pd complex (PhPdbipy+) and that the counteranion determines the regioselectivity. High‐level DFT calculations reveal that C? C bond formation occurs via a carbopalladation pathway and not via electrophilic palladation. These calculations give some indications regarding the regioselectivity of the thiophene arylation.  相似文献   

14.
The synthesis of benzoates from aryl electrophiles and carbon monoxide is a prime example of a transition‐metal‐catalyzed carbonylation reaction which is widely applied in research and industrial processes. Such reactions proceed in the presence of Pd or Ni catalysts, suitable ligands, and stoichiometric bases. We have developed an alternative procedure that is free of any metal, ligand, and base. The method involves a redox reaction driven by visible light and catalyzed by eosin Y which affords alkyl benzoates from arene diazonium salts, carbon monoxide, and alcohols under mild conditions. Tertiary esters can also be prepared in high yields. DFT calculations and radical trapping experiments support a catalytic photoredox pathway without the requirement for sacrificial redox partners.  相似文献   

15.
A fundamentally novel approach to bioactive quinolizinones is based on the palladium‐catalyzed intramolecular cyclocarbonylation of allylamines. [Pd(Xantphos)I2], which features a very large bite angle, has been found to facilitate the rapid carbonylation of azaarene‐substituted allylamines into bioactive quinolizinones in good to excellent yields. This transformation represents the first dearomative carbonylation and is proposed to proceed by palladium‐catalyzed C N bond activation, dearomatization, CO insertion, and a Heck reaction.  相似文献   

16.
A highly selective palladium‐catalyzed oxidative carbonylation/carbocyclization/alkoxycarbonylation of enallenols to afford spirolactones bearing an all‐carbon quaternary center was developed. This transformation involves the overall formation of three C−C bonds and one C−O bond through a cascade insertion of carbon monoxide (CO), an olefin, and CO. Preliminary experiments on chiral anion‐induced enantioselective carbonylation/carbocyclization of enallenols afforded spirolactones with moderate enantioselectivity.  相似文献   

17.
Metal‐catalyzed C?H activation not only offers important strategies to construct new bonds, it also allows the merge of important research areas. When quinoline N‐oxide is used as an arene source in C?H activation studies, the N?O bond can act as a directing group as well as an O‐atom donor. The newly reported density functional theory method, M11L, has been used to elucidate the mechanistic details of the coupling between quinoline N?O bond and alkynes, which results in C?H activation and O‐atom transfer. The computational results indicated that the most favorable pathway involves an electrophilic deprotonation, an insertion of an acetylene group into a Rh?C bond, a reductive elimination to form an oxazinoquinolinium‐coordinated RhI intermediate, an oxidative addition to break the N?O bond, and a protonation reaction to regenerate the active catalyst. The regioselectivity of the reaction has also been studied by using prop‐1‐yn‐1‐ylbenzene as a model unsymmetrical substrate. Theoretical calculations suggested that 1‐phenyl‐2‐quinolinylpropanone would be the major product because of better conjugation between the phenyl group and enolate moiety in the corresponding transition state of the regioselectivity‐determining step. These calculated data are consistent with the experimental observations.  相似文献   

18.
The oxidative coupling of primary amines with internal alkynes catalyzed by Ru complexes is presented as a general atom‐economy methodology with a broad scope of applications in the synthesis of N‐heterocycles. Reactions proceed through regioselective C?H bond activation in 15 minutes under microwave irradiation or in 24 hours with conventional heating. The synthesis of 2,3,5‐substituted pyridines, benzo[h]isoquinolines, benzo[g]isoquinolines, 8,9‐dihydro‐benzo[de]quinoline, 5,6,7,8‐tetrahydroisoquinolines, pyrido[3,4g]isoquinolines, and pyrido[4,3g]isoquinolines is achievable depending on the starting primary amine used. DFT calculations on a benzylamine substrate support a reaction mechanism that consists of acetate‐assisted C?H bond activation, migratory‐insertion, and C?N bond formation steps that involve 28–30 kcal mol?1. The computational study is extended to additional substrates, namely, 1‐naphthylmethyl‐, 2‐methylallyl‐, and 2‐thiophenemethylamines.  相似文献   

19.
Described herein is an IrIII/porphyrin‐catalyzed intermolecular C(sp3)?H insertion reaction of a quinoid carbene (QC). The reaction was designed by harnessing the hydrogen‐atom transfer (HAT) reactivity of a metal‐QC species with aliphatic substrates followed by a radical rebound process to afford C?H arylation products. This methodology is efficient for the arylation of activated hydrocarbons such as 1,4‐cyclohexadienes (down to 40 min reaction time, up to 99 % yield, up to 1.0 g scale). It features unique regioselectivity, which is mainly governed by steric effects, as the insertion into primary C?H bonds is favored over secondary and/or tertiary C?H bonds in the substituted cyclohexene substrates. Mechanistic studies revealed a radical mechanism for the reaction.  相似文献   

20.
Pd‐catalyzed intermolecular dearomative Heck reaction of indoles with aryl iodides is described. The challenges on both reactivity and regioselectivity are addressed by the judicious regulation of the geometric and electronic properties of the substrates. An array of indoline derivatives bearing C2‐quaternary center is obtained in good to excellent yields (up to 93%) with exclusive regioselectivity under operationally simple conditions. The mechanistic proposal is supported by detailed DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号