首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C4Ds). The experimental setup featured a 50 μm id linear polyacrylamide (LPA) coated fused‐silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the manifold allows the placement of the first detector at about 2.7 cm from the sample inlet. Agreement of simulated electropherograms with experimental data was obtained for the migration and separation of cationic and anionic analyte and system zones in CZE configurations in which EOF and other column properties are constant. For configurations with discontinuous buffer systems, including ITP, experimental data obtained with the array detector revealed that the EOF is not constant. Comparison of simulation and experimental data of ITP systems provided the insight that the EOF can be estimated with an ionic strength dependent model similar to that previously used to describe EOF in fused‐silica capillaries dynamically double coated with Polybrene and poly(vinylsulfonate). For the LPA coated capillaries, the electroosmotic mobility was determined to be 17‐fold smaller compared to the case with the charged double coating. Simulation and array detection provide means for quickly investigating electrophoretic transport and separation properties. Without realistic input parameters, modeling alone is not providing data that match CE results.  相似文献   

2.
Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn2+/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn2+/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.  相似文献   

3.
The analytical separation of proteins by isotachophoresis (ITP) was achieved in a short electrophoretic path and with a resolution comparable to that of isoelectric focusing by the appropriate selection of (1) a mixture of ampholytes as spacers to generate linear gradients of electrophoretic mobility and (2) the counter ions chosen to buffer the complete pH gradient generated. This ITP technique is exemplified by the analysis of plasma proteins in agarose gels. Up to 46 samples in the same gel plate were analysed. The resolution was such that at least 30 clear and discrete bands per sample could be observed after staining with Coomassie Brilliant Blue. The resolving power of ITP could be further increased for the study of a particular protein or zone by the selection of suitable spacers and counter ions.  相似文献   

4.
A feasibility study was performed using zone electrophoresis (ZE) coupled on‐line with isotachophoresis (ITP) sample pretreatment on a poly(methyl methacrylate) column‐coupling chip with integrated conductivity detection for direct determination of drugs in serum. Valproic acid (an antiepileptic drug), having a therapeutic range of 0.35–0.69 mmol/L (50–100 mg/L), was a test analyte while reference serum samples served as proteinaceous matrices. ITP provided in the ITP‐ZE combination a multitask sample pretreatment: (1) separation of the analyte from the serum matrix and its concentration into a narrow ITP band, (2) removal of the matrix constituents migrating in the ITP stack from the separation compartment of the chip, (3) ITP stacking of the drug released on a continuous electrophoretic decomposition of the drug‐protein complex. A high sample loadability, closely linked with the use of ITP in the first separation stage, made it possible to inject diluted serum samples with the aid of a 0.95 μL sample channel of the chip. Consequently, a 1–2 μmol/L concentration limit of quantitation for valproate from the response of the conductivity detector in the ZE stage of the combination was reached. The drug could be reliably determined in less than 10 minutes also in instances when its concentration in serum was below the lower value of the therapeutic range. 90–94% recoveries of valproate from serum samples were obtained in its direct ITP‐ZE determination when the filtration of the diluted serum (a 0.45 μm pore size filter) was the only pre‐column sample handling operation. No disturbances attributable to the precipitation of proteins from the loaded samples in the chip channels were detected.  相似文献   

5.
The electrophoretic mobility and zeta potential of bovine knee chondrocytes (BKCs), methyl methacrylate-sulfopropyl methacrylate (MMA-SPM) nanoparticles (NPs), polybutylcyanoacrylate (PBCA) NPs, and solid lipid nanoparticles (SLNs) were investigated under the influences of Na+, K+, and Ca2+ with various ionic strengths. The fixed charge density in the surface layers of the four biocolloidal particles was estimated from the experimental mobility of capillary electrophoresis with a theory of soft charged colloids. The results revealed that, for a specific cationic species, the absolute values of the electrophoretic mobility, the zeta potential, and the fixed charge density decreased with an increase in ionic strength. For a constant ionic strength, the effect of ionic species on the reduction in the absolute values of the electrophoretic mobility, the zeta potential, and the fixed charge density followed the order Na+>K+>Ca2+ for the negatively charged BKCs, MMA-SPM NPs, and SLNs. The reverse order is true for the positively charged PBCA NPs.  相似文献   

6.
Capillary isotachophoresis (ITP) was applied to the qualitative and quantitative analysis of both natural and synthetic oligo- and polypeptides. Based on the mathematical model of acid-base equilibria for a general ampholyte, a procedure and a computer program for the calculation of the pH dependence of the effective and specific charge and effective mobility of peptides with known amino acid sequence were developed which allow the selection of electrolyte systems for peptide isotachophoretic analysis to be rationalized. Basic peptides (bovine pancreatic trypsin inhibitor, bull seminal isoinhibitors of trypsin, arginine vasopressin and adamantylamide-alanylisoglutamine) were analysed with a cationic ITP system at acidic pH. Neutral and acidic peptides (insulin, proinsulin, bull seminal isoinhibitors of trypsin, cow colostrum isoinhibitors of trypsin) were analysed with an anionic ITP system, mostly at alkaline pH. Peptide purity (electrophoretic homogeneity) was determined from the ITP degree of purity defined by a peptide itself and the zone length ratio of its admixtures. Enrichment of peptide in the sample during the purification procedure was measured by its zone length relative to unit mass of the amount of sample analysed.  相似文献   

7.
The extraction of target analytes from biological samples is a bottleneck in analysis. A microfluidic device featuring an electrokinetic size and mobility trap was formed by two nanojunctions of different pore size to extract and concentrate analytical targets from complex samples. The trap was seamlessly coupled with electrophoretic separation for quantitative analysis. The device was applied to the analysis of ampicillin levels in blood within 5 min and a linear response over the range of 2.5–20 μg mL?1. This covers the recommended levels for treating sepsis, a critical condition with 30 to 50 % mortality and unpredicted drug levels. The device provides a new opportunity for on‐site therapeutic drug monitoring, which should enable quick and accurate dosing and may save lives in such critical conditions.  相似文献   

8.
The use of isotachophoretic (ITP) sample focusing to improve the detection limits for the analysis of charged compounds in capillary electrochromatography (CEC) is described. A coupled-column set-up was used with a 220-microm inner diameter capillary, in which counterflow ITP focusing was performed, connected via a T-junction to a 75-microm inner diameter CEC capillary. As is illustrated, the use of ITP focusing resulted in a dramatic reduction of the sample concentration detection limits. To demonstrate the performance of the ITP-CEC combination, several cationic low-molecular mass compounds in a plasma and urine matrix are analysed using UV-absorbance and mass spectrometric detection. A linear calibration curve was constructed over three decades and detection limits in the low nmol/l range were found for academic samples, using UV-absorbance detection.  相似文献   

9.
The free solution electrophoretic behavior of DNA‐protein complexes depends on their charge and mass in a certain experimental condition, which are two fundamental properties of DNA‐protein complexes in free solution. Here, we used CE LIF to study the free solution behavior of DNA‐methyl‐CpG‐binding domain protein (MBD2b) complexes through exploring the relationship between the mobilities, charge, and mass of DNA‐protein complexes. This method is based on the effective separation of free DNA and DNA‐protein complexes because of their different electrophoretic mobility in a certain electric field. In order to avoid protein adsorption, a polyacrylamide‐coated capillary was used. Based on the evaluation of the electrophoretic behavior of formed DNA‐MBD2b complexes, we found that the values of (μ0/μ)‐1 were directly proportional to the charge‐to‐mass ratios of formed complexes, where the μ0 and μ are the mobility of free DNA probe and DNA‐protein complex, respectively. The models were further validated by the complex mobilities of protein with various lengths of DNA probes. The deviation of experimental and calculated charge‐to‐mass ratios of formed complexes from the theoretical data was less than 10%, suggesting that our models are useful to analyze the DNA‐binding properties of the purified MBD2b protein and help to analyze other DNA‐protein complexes. Additionally, this study enhances the understanding of the influence of the charge‐to‐mass ratios of formed DNA‐protein complexes on their separation and electrophoretic behaviors.  相似文献   

10.
A novel method is reported for rapid protein identification by the analysis of tryptic peptides using desorption electrospray ionisation (DESI) coupled with hyphenated ion mobility spectrometry and quadrupole time-of-flight mass spectrometry (IMS/Q-ToF-MS). Confident protein identification is demonstrated for the analysis of tryptically digested bovine serum albumin (BSA), with no sample pre-treatment or clean-up. Electrophoretic ion mobility separation of ions generated by DESI allowed examination of charge-state and mobility distributions for tryptic peptide mixtures. Selective interrogation of singly charged ions allowed isobaric peptide responses to be distinguished, along with a reduction in spectral noise. The mobility-selected singly charged peptide responses were presented as a pseudo-peptide mass fingerprint (p-PMF) for protein database searching. Comparative data are shown for electrospray ionisation (ESI) of the BSA digest, without sample clean-up, from which confident protein identification could not be made. Implications for the robustness of the DESI method, together with potential insights into mechanisms for DESI of proteolytic digests, are discussed.  相似文献   

11.
Cationic ITP was used to separate and concentrate fluorescently tagged cardiac troponin I (cTnI) from two proteins with similar isoelectric properties in a PMMA straight‐channel microfluidic chip. In an initial set of experiments, cTnI was effectively separated from R‐Phycoerythrin using cationic ITP in a pH 8 buffer system. Then, a second set of experiments was conducted in which cTnI was separated from a serum contaminant, albumin. Each experiment took ~10 min or less at low electric field strengths (34 V/cm) and demonstrated that cationic ITP could be used as an on‐chip removal technique to isolate cTnI from albumin. In addition to the experimental work, a 1D numerical simulation of our cationic ITP experiments has been included to qualitatively validate experimental observations.  相似文献   

12.
Micelle to solvent stacking (MSS) is a new on-line sample concentration technique for charged analytes in capillary zone electrophoresis (CZE). Sample concentration in MSS mainly relies on the reversal in the effective electrophoretic mobility of the analyte at the boundary zone between the sample solution (S) and CZE background solution (BGS) inside the capillary. The basic condition for MSS is that the S is prepared in a matrix that contains an additive (i.e., micelles) which interacts with and has an opposite charge compared to the analytes. In addition, the BGS must contain a sufficient percentage of organic solvent. MSS was first reported for organic cations using anionic dodecyl sulfate micelles as additive in the S and methanol or acetonitrile as organic solvent in the BGS. Here, theoretical and experimental studies on MSS are described for organic anions using cationic cetyltrimethyl ammonium micelles as additive in the S and methanol as organic solvent in the BGS. Up to an order of magnitude improvement in concentration sensitivity was obtained for the test hypolipidaemic drugs using MSS in CZE with UV detection. The optimized method was also evaluated to the analysis of a spiked wastewater sample that was subjected to a simple extraction step.  相似文献   

13.
Transient ITP (t-ITP) has been used in carrier ampholyte-based CE (CABCE) to enhance the sensitivity of protein analysis. The characteristics of carrier ampholytes (CAs) narrow pH cuts-based buffers, when used as BGEs in CE are compatible with t-ITP requirements. Indeed, being the sole buffering species of such solutions, CAs impose a pH close to their pI. Thus, in these solutions, the CAs possess low electrophoretic mobility. As a consequence, by adding an ionic component with high electrophoretic mobility either in the studied sample or in the BGE, a t-ITP step can be generated. This has first been demonstrated for protein test mixtures. Then, the combination of t-ITP with CABCE has been applied to study a real sample, the bovine milk.  相似文献   

14.
The electrophoretic mobility of poly(styrene-co-acrolein) microspheres was studied as a function of storage time. It was shown that pHIEP2.0 is retained but the abnormal dependence of electrophoretic mobility on NaCl concentration is replaced by classical dependence. When comparing chemisorption of bovine serum albumin (BSA) on the microsphere surface for various latex samples, the differences in the isotherm patterns was revealed; moreover, the prevalence of surface concentration of carboxyl groups over that of aldehyde groups resulted in a decrease in adsorption. After the modification of the microspheres by protein, the values of pHIEPfall within the range of 3.5–5.0 and their dependence on the amount of surface-bound protein passes the minimum. The results obtained are discussed in terms of the different arrangement patterns of protein molecules on the microsphere surface and the changes of BSA macromolecule conformations under the effect of a dispersion medium and as a result of chemical interaction with the polymer surface.  相似文献   

15.
d'Orlyé F  Varenne A  Gareil P 《Electrophoresis》2008,29(18):3768-3778
Size-sorted maghemite (gamma-Fe(2)O(3)) particle populations of number mean solid diameters ranging from 6 to 10 nm were suspended and directly characterized in their stabilizing acidic, citrated or basic aqueous media using CZE coupled with UV detection. Analytical conditions were optimized in order to ensure reliable mobility measurements of these ferrofluids in their anionic and cationic forms. Particular interest has been paid to the investigation of the positively charged ferrofluids since cationic colloids have received little attention so far. A strategy for capillary wall modification was chosen in order to prevent particle adsorption while preserving high analytical performances. The influence of experimental conditions such as particle volume fraction, injection volume, electric field strength and electrolyte nature on electrophoretic profiles and measured electrophoretic mobilities was evaluated. A size-dependent electrophoretic mobility was demonstrated and discussed in terms of the ratio of the particle radius to Debye length with reference to existing models (Henry, etc.). Although these nanometric particle distributions lie in a very narrow size range, partial separation was obtained with selectivity varying as a function of electrolyte ionic strength.  相似文献   

16.
A dynamic coating using methylcellulose (MC) and a nonionic detergent (polysorbate 20) was developed, which controlled protein adsorption onto the surface of microchannels on a microchip made of poly(methyl methacrylate) (PMMA). Optimum concentration of polysorbate 20 in combination with the range of MC concentrations controlled the protein adsorption onto the microchannel surface, and increased the solubility of the protein samples while facilitating the injection of high concentrations of MC solutions into the microchannels. Higher concentrations of nonionic detergent increased the EOF mobility as opposed to the electrophoretic mobility and caused the electrophoresis to fail. Nondenaturing microchip electrophoresis of protein samples with molecular masses ranging from 20 to 100 kDa were completed in 100 s. Also, successful separation of a BSA sample and its complex with anti-BSA mAb ( 220 kDa) was achieved on a PMMA microchip. The separation exhibited high reproducibility in both migration time (RSD = 1%) and peak area (RSD = 10-15%).  相似文献   

17.
During SDS‐PAGE experiments, proteins generally display electrophoretic mobility in keeping with their molecular weights; however, some proteins display anomalies in mobility. Here, we focus attention on the anomalies displayed by the highly acidic ~110 residues‐long, sequence‐homologous, structurally‐analogous, extracellular domains of human E‐ and N‐cadherin. We report that there is a strong correlation between the acidity of each domain and the degree of the anomaly that it displays. The anomaly is only seen if the ratio of the numbers of negatively‐charged and positively‐charged residues is equal to or greater than the value of 1.50. The degree of the anomaly rises in proportion with this NC:PC ratio. Greater‐than‐expected anomalies are observed for domains containing dense clusters of negatively charged residues. A simple explanation for these observations is that highly acidic domains electrostatically repel SDS. This results in insufficient SDS binding, insufficient electromotive incentive and (consequently) lowered electrophoretic mobility. This explanation is in consonance with the current view that initial stages of SDS‐protein engagement tend to be dominated by electrostatics. We discuss the current anomalies within the broader context of all conceivable explanations for such anomalies.  相似文献   

18.
A new multidimensional analytical approach for the ultra‐trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on‐line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean‐up) in a large injection volume (1–10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP – chiral CZE‐QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications.  相似文献   

19.
Electric field gradient focusing (EFGF) uses a hydrodynamic flow and an electric field gradient to focus proteins in order of electrophoretic mobility. In this paper, we describe several bioanalytical applications using voltage-controlled hollow dialysis fiber-based EFGF with online UV detection. Using bovine serum albumin (BSA) as a model protein, a concentration factor as high as 15,000 and a concentration limit of detection as low as 30 pM were achieved. We also demonstrate the potential of using fiber-based EFGF for protein quantitative analysis. Simultaneous desalting and protein concentration were performed by mixing BSA with 2 M NaCl in a cell culture medium. Online concentration of ferritin and simultaneous removal of albumin from a sample matrix were performed using this EFGF system.  相似文献   

20.
A new kind of affinity electrophoresis called antibody affinity electrophoresis is a technique used to capture protein antigens based on their interactions with specific monoclonal or polyclonal antibodies incorporated in the polyacrylamide gel. Polyclonal anti-glutathione-S-transferase (anti-GST), monoclonal anti-bovine serum albumin (anti-BSA), and polyclonal anti-human alpha-lactalbumin are embedded in distinct areas of a 7.5% native polyacrylamide gel. Some of the embedded antibodies get covalently and/or noncovalently incorporated into the gel matrix network. Under electrophoresis conditions, these antibodies do not show significant electrophoretic mobility, as compared to their specific protein antigen analytes. We observed that electrophoretic migration of GST, BSA, and protein G ceases when they encounter anti-GST, anti-BSA, and immunoglobulin G, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号