首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
Herein, we disclose the gold‐catalyzed 1,2‐diarylation of alkenes through the interplay of ligand‐enabled AuI/AuIII catalysis with the idiosyncratic π‐activation mode of gold complexes. Unlike the classical migratory‐insertion‐based approach to 1,2‐diarylation, the present approach not only circumvents the formation of direct Ar?Ar′ coupling and Heck‐type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate‐limiting step owing to the non‐innocent nature of the aryl alkene.  相似文献   

2.
The synthesis, reactivity, and potential of well‐defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PNHPiPr ( LH ) ligand, dinuclear AuI–AuI complex 1 and mixed‐valent AuI–AuIII complex 2 provide access to structurally characterized chlorido‐bridged cationic species 3 and 4 upon halide abstraction. For 2 , this transformation involves unprecedented two‐electron oxidation of the redox‐active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π‐activated phenylacetylide complex 5 . When applied in the dual gold heterocycloaddition of a urea‐functionalized alkyne, well‐defined precatalyst 3 provides high regioselectivities for the anti‐Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear AuI systems. This proof‐of‐concept demonstrates the benefit of preorganization of two gold centers to enforce selective non‐classical σ,π‐activation with bifunctional substrates.  相似文献   

3.
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI/AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI/AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.  相似文献   

4.
Exploration of elementary reactions in organometallic catalysis is an important method with which to discover new reactions. In this article, we report a gold(I)-catalyzed iodo-alkynylation of benzyne involving the merging of challenging migratory insertion and an oxidative addition process in gold catalytic cycle. A wide range of structurally diverse alkynyl iodides are good coupling partners in this iodo-alkynylation transformation. Both aliphatic and aromatic alkynyl iodides can react with benzynes smoothly to afford highly functionalized 1,2-disubstituted aromatics in moderate to good yields. Its good functional group compatibility and late-stage application of complex molecules demonstrate its synthetic robustness. Studies of the mechanism reveals the feasibility of oxidative addition and the DFT calculations demonstrate the possible migratory insertion of benzyne into AuIII-carbon bonds in the AuI/AuIII redox catalytic cycle, representing an important step towards an elementary reaction in gold chemistry research.  相似文献   

5.
AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.  相似文献   

6.
The AuI‐catalyzed fluorination–hydration of 2‐alkynylphenol derivatives in the presence of Selectfluor [1‐chloromethyl‐4‐fluoro‐1,4‐diazoniabicyclo‐[2.2.2]octane bis(tetrafluoroborate)] has been developed. This method provides straightforward access to α‐fluorobenzofuranones with the construction of C?O, C=O, and C?F bonds in a single step on the basis of an AuI/AuIII redox catalytic cycle. Several control experiments, including the asymmetric variant of this reaction, were also conducted to gain insight into the reaction mechanism.  相似文献   

7.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π‐activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5‐, 6‐, and 7‐membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron‐rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5‐exo to 6‐endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

8.
The treatment of bis[(dialkylamino)cyclopropenimines] with dihalophosphines in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) to form diimine‐stabilized PIII‐centered dications is reported. The structures of the new compounds were determined by using X‐ray diffraction analysis and their donor abilities as ligands evaluated through electrochemical methods. Despite the two positive charges that they bear, these compounds depict intermediate behavior between that of phosphines and phosphites. The coordination of the [L2PR]2+ moiety to AuI and AgI is also reported. Even more surprisingly, these phosphorus centers can be oxidized to the corresponding PV dications in the presence of strong oxidants such as peroxides or XeF2.  相似文献   

9.
Gold‐catalyzed C(sp)–C(sp2) and C(sp2)–C(sp2) cross‐coupling reactions are accomplished with aryldiazonium salts as the coupling partner. With the assistance of bpy ligand, gold(I) species were oxidized to gold(III) by diazonium without any external oxidants. Monitoring the reaction with NMR and ESI‐MS provided strong evidence for the nitrogen extrusion followed by AuIII reductive elimination as the key step.  相似文献   

10.
Herein, we disclose the gold-catalyzed 1,2-diarylation of alkenes through the interplay of ligand-enabled AuI/AuIII catalysis with the idiosyncratic π-activation mode of gold complexes. Unlike the classical migratory-insertion-based approach to 1,2-diarylation, the present approach not only circumvents the formation of direct Ar−Ar′ coupling and Heck-type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate-limiting step owing to the non-innocent nature of the aryl alkene.  相似文献   

11.
In recent years interest in the development of protocols that facilitate the oxidative addition of gold to access mild cross-coupling processes mediated by this metal has increased. In this context, we report herein that ascorbic acid, a natural and readily accessible antioxidant, can be used to accelerate the oxidative addition of aryldiazonium chlorides onto AuI. The aryl–AuIII species generated in this way, has been used to prepare 3-arylindoles in a one-pot protocol starting from anilines and para-, meta-, and ortho- substituted aryldiazonium chlorides. The mechanism underlying the oxidative addition has been examined in detail based on EPR analyses, cyclic voltammetry, and DFT calculations. Interestingly, we have found that in this protocol, the chloride atom induces the AuII/AuIII oxidation step.  相似文献   

12.
Monometallic gold(I)‐alkynyl‐helicene complexes ( 1 a , b ) and bimetallic gold(I)‐alkynyl‐helicene architectures featuring the presence ( 2 a , b ) or absence ( 3 a , b ) of aurophilic intramolecular interactions were prepared by using different types of phosphole ligands (mono‐phosphole L1 or bis‐phospholes L2 , 3 ). The influence of the AuI d10 metal center(s) on the electronic, photophysical, and chiroptical properties of these unprecedented phosphole‐gold(I)‐alkynyl‐helicene complexes was examined. Experimental and theoretical results highlight the importance of ligand‐to‐ligand‐type charge transfers and the strong effect of the presence or absence of AuI–AuI interactions in 2 a , b .  相似文献   

13.
The first isolated examples of intermolecular oxidative addition of alkenyl and alkynyl iodides to AuI are reported. Using a 5,5′‐difluoro‐2,2′‐bipyridyl ligated complex, oxidative addition of geometrically defined alkenyl iodides occurs readily, reversibly and stereospecifically to give alkenyl‐AuIII complexes. Conversely, reversible alkynyl iodide oxidative addition generates bimetallic complexes containing both AuIII and AuI centers. Stoichiometric studies show that both new initiation modes can form the basis for the development of C?C bond forming cross‐couplings.  相似文献   

14.
This report describes the synthesis and characterization of novel N‐heterocyclic carbene (NHC)–gold(I) complexes and their bioconjugation to the CCRF‐CEM‐leukemia‐specific aptamer sgc8c. Successful bioconjugation was confirmed by the use of fluorescent tags on both the NHC–AuI complex and the aptamer. Cell‐viability assays indicated that the NHC–AuI–aptamer conjugate was more cytotoxic than the NHC–gold complex alone. A combination of flow cytometry, confocal microscopy, and cell‐viability assays provided clear evidence that the NHC–AuI–aptamer conjugate was selective for targeted CCRF‐CEM leukemia cells.  相似文献   

15.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2]? ( 1 ?; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 ? acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4?, ClO4?, ReO4?). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au? S and Au? P bonds, which is essential for metallaring expansion and contraction.  相似文献   

16.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2] ( 1 ; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4, ClO4, ReO4). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au S and Au P bonds, which is essential for metallaring expansion and contraction.  相似文献   

17.
The CuI/CuII and CuI/CuIII catalytic cycles have been subject to intense debate in the field of copper‐catalyzed oxidative coupling reactions. A mechanistic study on the CuI/CuII redox process, by X‐ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of CuII to CuI by 1,3‐diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby‐formed CuI has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper‐catalyzed oxidative cyclization of β‐ketocarbonyl derivatives to dihydrofurans. This protocol provides an ideal route to highly substituted dihydrofuran rings from easily available 1,3‐dicarbonyls and olefins.  相似文献   

18.
A triazolyl‐di‐ylidene ligand has been used for the preparation of a homodimetallic complex of gold, and a heterodimetallic compound of gold and iridium. Both complexes have been fully characterized and their molecular structures have been determined by means of X‐ray diffraction. The catalytic properties of these two complexes have been evaluated in the reduction of nitroarenes by transfer hydrogenation using primary alcohols. The two complexes afford different reaction products; whereas the AuI–AuI catalyst yields a hydroxylamine, the IrIII–AuI complex facilitates the formation of an imine.  相似文献   

19.
The pairing of transition metal catalysis with the reagent Selectfluor (F‐TEDA–BF4) has attracted considerable attention due to its utility in myriad C?C and C?heteroatom bond‐forming reactions. However, little mechanistic information is available for Selectfluor‐mediated transition metal‐catalyzed reactions and controversy surrounds the precise role of Selectfluor in these processes. We present herein a systematic investigation of homogeneous Au‐catalyzed oxidative C?O bond‐forming reactions using density functional theory calculations. Currently, Selectfluor is thought to serve as an external oxidant in AuI/AuIII catalysis. However, our investigations suggest that these reactions follow a newly proposed mechanism in which Selectfluor functions as an electrophilic fluorinating reagent involved in a fluorination/defluorination cycle. We have also explored Selectfluor‐mediated gold‐catalyzed homocoupling reactions, which, when cyclopropyl propargylbenzoate is used as a substrate, lead to an unexpected byproduct.  相似文献   

20.
In a systematic study of the Au‐catalyzed reaction of o‐alkynylphenols with aryldiazonium salts, we find that essentially the same reaction conditions lead to a change in mechanism when a light source is applied. If the reaction is carried out at room temperature using a AuI catalyst, the diazonium salt undergoes electrophilic deauration of a vinyl AuI intermediate and provides access to substituted azobenzofurans. If the reaction mixture is irradiated with blue LED light, C?C bond formation due to N2‐extrusion from the diazonium salt is realized selectively, using the same starting materials without the need for an additional photo(redox) catalyst under aerobic conditions. We report a series of experiments demonstrating that the same vinyl AuI intermediate is capable of producing the observed products under photolytic and thermal conditions. The finding that a vinyl AuI complex can directly, without the need for an additional photo(redox) catalyst, result in C?C bond formation under photolytic conditions is contrary to the proposed mechanistic pathways suggested in the literature till date and highlights that the role of oxidation state changes in photoredox catalysis involving Au is thus far only poorly understood and may hold surprises for the future. Computational results indicate that photochemical activation can occur directly from a donor–acceptor complex formed between the vinyl AuI intermediate and the diazonium salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号