首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human chemokine-like factor 1 (CKLF1) exhibits chemotactic effects on leukocytes. A previous study demonstrated that CKLF1 is a functional ligand for human CC chemokine receptor 4 (CCR4). The N-terminal amino acid sequencing of secreted CKLF1 protein showed that it contains at least two peptides, CKLF1-C27 and CKLF1-C19, which have functional activation via CCR4. To quantitatively evaluate the interaction of CKLF1-C27 or CKLF1-C19 with CCR4, the N-terminal extracellular tail of CCR4 (ML40), CKLF1-C27 and CKLF1-C19 were chemically synthesized and analyzed by capillary zone electrophoresis. Both qualitative and quantitative characterizations of the peptide-peptide binding were determined. We used the macrophage-derived chemokine (MDC) as the positive control and its binding constant was (4.99 ± 0.86) × 104 M?1. The binding constant of the interactions between CKLF1-C27/CKLF1-C19 and ML40 was calculated as (2.96 ± 0.59) × 104 M?1 and (1.39 ± 0.38) × 104 M?1 by the Scatchard analysis. This result proved that CKLF1-C27 had a greater potent affinity with ML40 than CKLF1-C19 because of the excess eight amino acids. To understand the molecular basis for the interaction, a mutagenesis study of CKLF1-C19 was undertaken. CKLF1-C19pm and CKLF1-C19km were synthesized and their interactions with ML40 were analyzed by CZE. We found that the substitution of Lys or Pro to Ala within the residues of CKLF1-C19 strongly abolished or decreased its interaction with ML40, suggesting that the Lys residues of CKLF1-C19 play the important role for the interaction and the Pro residues of CKLF1-C19 affect its affinity. All the experimental results show that the reported method by CZE for the determination of the interactions of CKLF1 peptides and the N-terminal extracellular tail of CCR4 is powerful.  相似文献   

2.
The microtubule‐associated protein Tau promotes the polymerization of tubulin and modulates the function of microtubules. As a consequence of the dynamic nature of the Tau–tubulin interaction, the structural basis of this complex has remained largely elusive. By using NMR methods optimized for ligand–receptor interactions in combination with site‐directed mutagenesis we demonstrate that the flanking domain downstream of the four microtubule‐binding repeats of Tau binds competitively to a site on the α‐tubulin surface. The binding process is complex, involves partial coupling of different interacting regions, and is modulated by phosphorylation at Y394 and S396. This study strengthens the hypothesis of an intimate relationship between Tau phosphorylation and tubulin binding and highlights the power of the INPHARMA NMR method to characterize the interaction of peptides derived from intrinsically disordered proteins with their molecular partners.  相似文献   

3.
Our goal was to obtain the X‐ray crystal structure of the glycosylated chemokine Ser‐CCL1. Glycoproteins can be hard to crystallize because of the heterogeneity of the oligosaccharide (glycan) moiety. We used glycosylated Ser‐CCL1 that had been prepared by total chemical synthesis as a homogeneous compound containing an N‐linked asialo biantennary nonasaccharide glycan moiety of defined covalent structure. Facile crystal formation occurred from a quasi‐racemic mixture consisting of glycosylated L ‐protein and non‐glycosylated‐D ‐protein, while no crystals were obtained from the glycosylated L ‐protein alone. The structure was solved at a resolution of 2.6–2.1 Å. However, the glycan moiety was disordered: only the N‐linked GlcNAc sugar was well‐defined in the electron density map. A racemic mixture of the protein enantiomers L ‐Ser‐CCL1 and D ‐Ser‐CCL1 was also crystallized, and the structure of the true racemate was solved at a resolution of 2.7–2.15 Å. Superimposition of the structures of the protein moieties of L ‐Ser‐CCL1 and glycosylated‐L ‐Ser‐CCL1 revealed there was no significant alteration of the protein structure by N‐glycosylation.  相似文献   

4.
Homeostatic trafficking of immune cells by CC chemokine receptor 7 (CCR7) keeps immune responses and tolerance in a balance. The involvement of this protein in lymph node metastasis in cancer marks CCR7 as a penitential drug target. Using the crystal structure of CCR7, herein, a comprehensive virtual screening study is presented to filter novel strong CCR7 binding phytochemicals from Saudi medicinal plants that have a higher binding affinity for the intracellular allosteric binding pocket. By doing so, three small natural molecules named as Hit-1 (1,8,10-trihydroxy-3-methoxy-6-methylanthracen-9(4H)-one), Hit-2 (4-(3,4-dimethoxybenzyl)-3-(4-hydroxy-3-methoxybenzyl)dihydrofuran-2(3H)-one), and Hit-3 (10-methyl-12,13-dihydro-[1,2]dioxolo[3,4,5-de]furo[3,2-g]isochromeno[4,3-b]chromen-8-ol) are predicted showing strong binding potential for the CC chemokine receptor 7 allosteric pocket. During molecular dynamics simulations, the compounds were observed in the formation of several chemical bonding of short bond distances. Additionally, the molecules remained in strong contact with the active pocket residues and experienced small conformation changes that seemed to be mediated by the CCR7 loops to properly engage the ligands. Two types of binding energy methods (MM/GBPBSA and WaterSwap) were additionally applied to further validate docking and simulation findings. Both analyses complement the good affinity of compounds for CCR7, the electrostatic and van der Waals energies being the most dominant in intermolecular interactions. The active pocket residue’s role in compounds binding was further evaluated via alanine scanning, which highlighted their importance in natural compounds binding. Additionally, the compounds fulfilled all drug-like rules: Lipinski, Ghose, Veber, Egan, and Muegge passed many safety parameters, making them excellent anti-cancer candidates for experimental testing.  相似文献   

5.
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T‐cells and acts as a chemoattractant for monocytes. 1 Originally, CCL1 was identified as a 73 amino acid protein having one N‐glycosylation site, 1 and a variant 74 residue non‐glycosylated form, Ser‐CCL1, has also been described. 2 There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser‐CCL1. Here we report the total chemical syntheses of both N‐glycosylated and non‐glycosylated forms of (Ser‐)CCL1, by convergent native chemical ligation. We used an N‐glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide‐αthioester building block. 3 Chemotaxis assays of these glycoproteins and the corresponding non‐glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser‐)CCL1 using homogeneous N‐glycosylated protein molecules of defined covalent structure.  相似文献   

6.
9-cis-Retinoic acid (9CRA) plays an important role in the immune response; this includes cytokine production and cell migration. We have previously demonstrated that 9CRA increases expression of chemokine receptors CCR1 and CCR2 in human monocytes. To better understand how 9CRA induces CCR1 and CCR2 expression, we examined the contribution of signaling proteins in human monocytic THP-1 cells. The mRNA and surface protein up-regulation of CCR1 and CCR2 in 9CRA-stimulated cells were weakly blocked by the pretreatment of SB202190, a p38 MAPK inhibitor, and PD98059, an upstream ERK inhibitor. Activation of p38 MAPK and ERK1/2 was induced in both a time and dose-dependent manner after 9CRA stimulation. Both p38 MAPK and ERK1/2 phosphorylation peaked at 2 h after a 100 nM 9CRA treatment. 9CRA increased calcium influx and chemotactic activity in response to CCR1-dependent chemokines, Lkn-1/CCL15, MIP-1alpha/CCL3, and RANTES/CCL5, and the CCR2-specific chemokine, MCP-1/CCL2. Both SB202190 and PD98059 pretreatment diminished the increased calcium mobilization and chemotactic ability due to 9CRA. SB202190 inhibited the expression and functional activities of CCR1 and CCR2 more effectively than did PD98059. Therefore, our results demonstrate that 9CRA transduces the signal through p38 MAPK and ERK1/2 for CCR1 and CCR2 up-regulation, and may regulate the pro-inflammatory process through the p38 MAPK and ERK-dependent signaling pathways.  相似文献   

7.
Li  Meina  Wang  Qing  Ling  Xiaomei  Yang  Lu  Li  Zhongjie  Ye  Min  Wang  Ying 《Chromatographia》2013,76(13):811-819

Licorice is gaining popularity because of its significant biological anti-inflammatory activity, while CC chemokine receptor 4 (CCR4) has been identified as a potentially important drug target for the treatment of inflammatory diseases. Capillary electrophoresis was developed for screening for the first time of CCR4 antagonists from natural products of licorice. The interactions between natural products of licorice and ML40, the equivalent peptide derived from the N-terminal of CCR4, were determined. Twenty-eight ingredients were isolated and the results showed that ten of them interacted with ML40 compared with the positive control S009. The binding constants of the compounds to ML40 were calculated and the binding constant of liquiritin apioside (LA) was the largest among them (3.636 ± 0.2185) × 104 M−1. The CCR4 antagonisms of the compounds that showed strong integration with ML40 were also confirmed by chemotaxis inhibition in which they displayed different degrees of inhibition to CCL22/CCL17-induced HEK293 chemotaxis. The methodology presented could be applied to automated high-throughput screening of potential antagonists of CCR4. This study provided the potential rationale for the development of anti-inflammatory compounds from natural products of licorice.

  相似文献   

8.
Licorice is gaining popularity because of its significant biological anti-inflammatory activity, while CC chemokine receptor 4 (CCR4) has been identified as a potentially important drug target for the treatment of inflammatory diseases. Capillary electrophoresis was developed for screening for the first time of CCR4 antagonists from natural products of licorice. The interactions between natural products of licorice and ML40, the equivalent peptide derived from the N-terminal of CCR4, were determined. Twenty-eight ingredients were isolated and the results showed that ten of them interacted with ML40 compared with the positive control S009. The binding constants of the compounds to ML40 were calculated and the binding constant of liquiritin apioside (LA) was the largest among them (3.636 ± 0.2185) × 104 M?1. The CCR4 antagonisms of the compounds that showed strong integration with ML40 were also confirmed by chemotaxis inhibition in which they displayed different degrees of inhibition to CCL22/CCL17-induced HEK293 chemotaxis. The methodology presented could be applied to automated high-throughput screening of potential antagonists of CCR4. This study provided the potential rationale for the development of anti-inflammatory compounds from natural products of licorice.  相似文献   

9.
Chemokines play a critical role in inducing chemotaxis, extravasation, and activation of leukocytes both in routine immunosurveillance and autoimmune diseases. Traditionally, to disrupt chemokine function, strategies have focused on blockage of its interaction with the receptor. Recently, it has been demonstrated that binding to glycosaminoglycans (GAGs) is also required for the in vivo activity of many chemokines. Thus, interference with the GAG-binding of chemokines may offer an alternative, valid, anti-inflammatory strategy. However, the potential of using small polyanions to inhibit the interactions between chemokines and cell surface GAGs has not been fully explored. In this study, a mass spectrometry based filtration trapping assay was utilized to study the interactions between two CCR 2 ligands (MCP-1/CCL2 and MCP-3/CCL7) and a series of low molecular weight, polyanionic molecules. Findings were confirmed by using a hydrophobic trapping assay. The results indicated that Arixtra (fondaparinux sodium), sucrose octasulfate, and suramin were specific binders of the chemokines, while cyclodextrin sulfate, although the most highly sulfated molecule among the ones investigated, showed no binding. The binding stoichiometry of the small molecule ligand was determined from the measured molecular weight of the noncovalent complex. Furthermore, the dissociation constant between MCP-3 and Arixtra was determined by using electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry, which compared favorably with the result of the isothermal titration calorimetry (ITC) assay. The relative binding affinity of these ligands to MCP-3 was also determined using a competitive filtration trapping assay.  相似文献   

10.
Gephyrin is the central scaffolding protein for inhibitory neurotransmitter receptors in the brain. Here we describe the development of dimeric peptides that inhibit the interaction between gephyrin and these receptors, a process which is fundamental to numerous synaptic functions and diseases of the brain. We first identified receptor‐derived minimal gephyrin‐binding peptides that displayed exclusive binding towards native gephyrin from brain lysates. We then designed and synthesized a series of dimeric ligands, which led to a remarkable 1220‐fold enhancement of the gephyrin affinity (KD=6.8 nM ). In X‐ray crystal structures we visualized the simultaneous dimer‐to‐dimer binding in atomic detail, revealing compound‐specific binding modes. Thus, we defined the molecular basis of the affinity‐enhancing effect of multivalent gephyrin inhibitors and provide conceptually novel compounds with therapeutic potential, which will allow further elucidation of the gephyrin–receptor interplay.  相似文献   

11.
12.
13.
Ras genes are frequently activated in human cancers, but the mutant Ras proteins remain largely “undruggable” through the conventional small‐molecule approach owing to the absence of any obvious binding pockets on their surfaces. By screening a combinatorial peptide library, followed by structure–activity relationship (SAR) analysis, we discovered a family of cyclic peptides possessing both Ras‐binding and cell‐penetrating properties. These cell‐permeable cyclic peptides inhibit Ras signaling by binding to Ras‐GTP and blocking its interaction with downstream proteins and they induce apoptosis of cancer cells. Our results demonstrate the feasibility of developing cyclic peptides for the inhibition of intracellular protein–protein interactions and of direct Ras inhibitors as a novel class of anticancer agents.  相似文献   

14.
A three‐step continuous‐flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49–94 %. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure–activity‐relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single‐digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry.  相似文献   

15.
Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.  相似文献   

16.
Chemokine receptors have evolved as attractive targets for disease conditions which arise due to immunomodulation involving host-defense mechanisms. CCR2, a chemokine receptor, is targeted for diseases like arthritis, multiple sclerosis, vascular disease, obesity, and type 2 diabetes. This study provides a new strategy of a ligand based technique which exploits fingerprint led fragment features in conjunction with structure-guided design for identifying new scaffolds for CCR2. A fragment based mining (FBM) technique was employed on a chemical database to identify novel scaffold hops. The hits were subjected to 3-point pharmacophore fingerprint procedures with Tanimoto similarity metric to compare pharmacophoric fingerprints. The final 66 hits generated by these exercises were predicted by the validated HQSAR model, and the top predicted were suggested as probable scaffolds for CCR2 antagonism. The identified scaffolds were validated through molecular docking studies. The ligands were docked by providing receptor flexibility in the extra cellular domain (1 and 3), N terminal domain, and in the transmembrane (TM1 & TM7) helix region with IFD approach. Some of the scaffolds showed H-bonding potential which was not explored by the data set molecules. All identified scaffolds highlighted a key hydrogen bonding interaction with Thr292 as supported by mutational studies. The observed pi stacking interaction with Tyr188 in data set molecules was also produced by the new scaffolds. Taking the advantage of receptor flexibility the scaffolds explored the hydrophobic binding cleft between helix 1 and 7 occupied by residues Leu44, Leu45, Leu48 and Ile300, Ile303, Ile304, respectively. Two of the identified molecules have promising outcomes and can be considered as novel scaffolds for CCR2 binding.  相似文献   

17.
β-Glucan, derived from Saccharomyces cerevisiae, is a biological response modifier which affects the innate and adaptive immune responses. The CCR5 chemokine receptor is crucial for immune cell responses. In this study, the effects of the carboxymethylated form of β-glucan (CM-G) on the lymphocyte population of CCR5 genotype patients with prostate cancer (PCa), undergoing androgen deprivation therapy (ADT) was assessed. The CCR5 genotype and lymphocyte population was investigated by cytometry flow in 30 Brazilian patients with advanced PCa who were treated with CM-G for 28 days. The analysis of the CCR5 chemokine receptor revealed that the wild-type genotype Wt/Wt was present in 80% of patients, while the heterozygotic genotype Wt/delta32 was present in 20% of patients. After CM-G administration, a significant increase in CD3(+), CD4(+) and CD8(+) T lymphocytes was observed in patients who displayed the wild-type genotype for the CCR5 chemokine receptor. No association was found between patient's age or length of ADT and increase in T lymphocyte cells. The results demonstrated the ability of CM-G to stimulate CD4(+) and CD8(+) T cells in the peripheral blood of patients carrying a wild-type CCR5 genotype, suggesting an interaction between immunomodulation by CM-G and the CCR5 receptor.  相似文献   

18.
The doppel protein (Dpl) is the first homologue of the prion protein (PrPC) to be discovered; it is overexpressed in transgenic mice that lack the prion gene, resulting in neurotoxicity. The whole prion protein is able to inhibit Dpl neurotoxicity, and its N‐terminal domain is the determinant part of the protein function. This region represents the main copper(II) binding site of PrPC. Dpl is able to bind at least one copper ion, and the specific metal‐binding site has been identified as the histidine residue at the beginning of the third helical region. However, a reliable characterization of copper(II) coordination features has not been reported. In a previous paper, we studied the copper(II) interaction with a peptide that encompasses only the loop region potentially involved in metal binding. Nevertheless, we did not find a complete match between the EPR spectroscopic parameters of the copper(II) complexes formed with the synthesized peptide and those reported for the copper(II) binding sites of the whole protein. Herein, the synthesis of the human Dpl peptide fragment hDpl(122–139) (Ac‐KPDNKLHQQVLWRLVQEL‐NH2) and its copper(II) complex species are reported. This peptide encompasses the third α helix and part of the loop linking the second and the third helix of human doppel protein. The single‐point‐mutated peptide, hDpl(122–139)D124N, in which aspartate 124 replaces an asparagine residue, was also synthesized. This peptide was used to highlight the role of the carboxylate group on both the conformation preference of the Dpl fragment and its copper(II) coordination features. NMR spectroscopic measurements show that the hDpl(122–139) peptide fragment is in the prevailing α‐helix conformation. It is localized within the 127–137 amino acid residue region that represents a reliable conformational mimic of the related protein domain. A comparison with the single‐point‐mutated hDpl(122–139)D124N reveals the significant role played by the aspartic residue in addressing the peptide conformation towards a helical structure. It is further confirmed by CD measurements. Potentiometric titrations were carried out in aqueous solutions to obtain the stability constant values of the species formed by copper(II) with the hDpl peptides. Spectroscopic studies (EPR, NMR, CD, UV/Vis) were performed to characterize the coordination environments of the different metal complexes. The EPR parameters of the copper(II) complexes with hDpl(122–139) match those of the previously reported copper(II) binding sites of the whole hDpl. Addition of the copper(II) ion to the peptide fragment does not alter the helical conformation of hDpl(122–139), as shown by CD spectra in the far‐UV region. The aspartate‐driven preorganized secondary structure is not significantly modified by the involvement of Asp124 in the copper(II) complex species that form in the physiological pH range. To elaborate on the potential role of copper(II) in the recently reported interaction between the PrPC and Dpl, the affinity of the copper(II) complexes towards the prion N terminus domain and the binding site of Dpl was reported.  相似文献   

19.
Bioactive conformations of peptides can be stabilized by macrocyclization, resulting in increased target affinity and activity. Such macrocyclic peptides proved useful as modulators of biological functions, in particular as inhibitors of protein–protein interactions (PPI). However, most peptide‐derived PPI inhibitors involve stabilized α‐helices, leaving a large number of secondary structures unaddressed. Herein, we present a rational approach towards stabilization of an irregular peptide structure, using hydrophobic cross‐links that replace residues crucially involved in target binding. The molecular basis of this interaction was elucidated by X‐ray crystallography and isothermal titration calorimetry. The resulting cross‐linked peptides inhibit the interaction between human adaptor protein 14‐3‐3 and virulence factor exoenzyme S. Taking into consideration that irregular peptide structures participate widely in PPIs, this approach provides access to novel peptide‐derived inhibitors.  相似文献   

20.
The seven transmembrane helices G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of signaling proteins found in humans. Homology modeling, molecular docking, and molecular dynamics (MD) simulation were carried out to construct a reliable model for CCR1 as one of the GPCRs and to explore the structural features and the binding mechanism of BX471 as one of the most potent CCR1 inhibitors. In this study, BX471 has been docked into the active site of the CCR1 protein. After docking, one 20 ns MD simulation was performed on the CCR1-ligand complex to explore effects of the presence of lipid membrane in the vicinity of the CCR1-ligand complex. At the end of the MD simulation, a change in the position and orientation of the ligand in the binding site was observed. This important observation indicated that the application of MD simulation after docking of ligands is useful. Explorative runs of molecular dynamics simulation on the receptor-ligand complex revealed that except for Phe85, Phe112, Tyr113, and Ile259, the rest of the residues in the active site determined by docking are changed. The results obtained are in good agreement with most of the experimental data reported by others. Our results show that molecular modeling and rational drug design for chemokine targets is a possible approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号