首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bonding geometry of sulfur in the cations of the title compounds, C8H11S+·CF3SO3? and C13H13S+·CF3SO3?, respectively, is similar and is independent of the ratio of the Me/Ph substituents. As expected, in both cations, the S—Ph bonds are somewhat shorter than the S—Me bonds. In both crystal structures, the interaction between cations and anions is similar.  相似文献   

2.
3.
The title compound, poly­[[di­aqua­di­bromo­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐aqua­cad­mium‐di‐μ‐bromo‐aqua­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐di‐μ‐bromo] dihydrate], [Cd3­Br6­(C6­H12­N4)2­(H2O)4]·­2H2O, is made up of two‐dimensional neutral rectangular coordination layers. Each rectangular subunit is enclosed by a pair of Cd32‐Br)6(H2O)3 fragments and a pair of (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragments as sides (hmt is hexa­methyl­enetetr­amine). The unique CdII atom in the Cd2Br2 ring in the Cd32‐Br)6(H2O)3 fragment is in a slightly distorted octahedral CdNOBr4 geometry, surrounded by one hmt ligand [2.433 (5) Å], one aqua ligand [2.273 (4) Å] and four Br atoms [2.6409 (11)–3.0270 (14) Å]. The CdII atom in the (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragment lies on an inversion center and is in a highly distorted octahedral CdN2O2Br2 geometry, surrounded by two trans‐related N atoms of two hmt ligands [2.479 (5) Å], two trans‐related aqua ligands [2.294 (4) Å] and two trans‐related Br atoms [2.6755 (12) Å]. Adjacent two‐dimensional coordination sheets are connected into a three‐dimensional network by hydrogen bonds involving lattice water mol­ecules, and the aqua, bromo and hmt ligands belonging to different layers.  相似文献   

4.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

5.
In the title compound, [Sb(CH3)(C6H5)3]BF4, there are four independent cations and anions in the asymmetric unit. The geometry around the Sb atom is distorted tetrahedral, with Sb—C distances in the range 2.077 (4)–2.099 (10) Å and angles at the Sb atom in the range 103.3 (3)–119.0 (4)°.  相似文献   

6.
The title compound, C24H20P+·C9H17NO5S, consists of an organic monovalent cation and an organic monovalent anion, the latter being derived from the TEMPO radical (TEMPO is 2,2,6,6‐tetra­methyl­piperidin‐1‐oxyl). Two inversion‐related anions interact via two –O—H⃛O—S– hydrogen bonds, forming a dimer in which there are no short contacts between the spin centres (–N—O) of the TEMPO(OH)SO3 anions. Furthermore, no significant magnetic interaction is observed between the dimers because the dimer is surrounded by cations. These results are consistent with the paramagnetic behaviour of the title salt.  相似文献   

7.
The molecular structures of the title compounds, 2,4,6‐tri­chloro­phenyl­iso­nitrile (IUPAC name: 2,4,6‐tri­chloro­phenyl isocyanide), C7H2Cl3N, and 2,4,6‐tri­chloro­benzo­nitrile, C7H2Cl3N, are normal. The two structures are not isomorphous, but do contain similar two‐dimensional layers in which pairs of mol­ecules are held together by pairs of Cl?CN [3.245 (3) Å] or Cl?NC [3.153 (2) Å] interactions. The two‐dimensional isomorphism is lost through different layer‐stacking modes.  相似文献   

8.
9,10‐Di­phenyl‐9,10‐epi­dioxy­anthracene, C26H18O2, (I), was accidentally used in a photo­oxy­genation reaction that produced 9,10‐di­hydro‐10,10‐di­methoxy‐9‐phenyl­anthracen‐9‐ol, C22H20O3, (II). In both compounds, the phenyl rings are approximately orthogonal to the anthracene moiety. The conformation of the anthracene moiety differs as a result of substitution. Intramolecular C—H⃛O interactions in (I) form two approximately planar S(5) rings in each of the two crystallographically independent mol­ecules. The packing of (I) and (II) consists of molecular dimers stabilized by C—H⃛O interactions and of molecular chains stabilized by O—H⃛O interactions, respectively.  相似文献   

9.
In 2,4‐di­hydroxy­benz­aldehyde 2,4‐di­nitro­phenyl­hydrazone N,N‐di­methyl­form­amide solvate {or 4‐[(2,4‐di­nitro­phenyl)­hydrazono­methyl]­benzene‐1,3‐diol N,N‐di­methyl­form­amide solvate}, C13H10N4O6·C3H7NO, (X), 2,4‐di­hydroxy­aceto­phenone 2,4‐di­nitro­phenyl­hydrazone N,N‐di­methyl­form­am­ide solvate (or 4‐{1‐[(2,4‐di­nitro­phenyl)hydrazono]ethyl}benzene‐1,3‐diol N,N‐di­methyl­form­amide solvate), C14H12N4O6·C3H7NO, (XI), and 2,4‐di­hydroxy­benzo­phenone 2,4‐di­nitro­phenyl­hydrazone N,N‐di­methyl­acet­amide solvate (or 4‐­{[(2,4‐di­nitro­phenyl)hydrazono]phenyl­methyl}benzene‐1,3‐diol N,N‐di­methyl­acet­amide solvate), C19H14N4O6·C4H9NO, (XII), the molecules all lack a center of symmetry, crystallize in centrosymmetric space groups and have been observed to exhibit non‐linear optical activity. In each case, the hydrazone skeleton is fairly planar, facilitated by the presence of two intramolecular hydrogen bonds and some partial N—N double‐bond character. Each molecule is hydrogen bonded to one solvent mol­ecule.  相似文献   

10.
Summary We have fabricated glasses in the Bi-2223 HTc superconductor system with Bi2Sr2Ca2Cu3-xErxO10+ δ nominal composition, where x=0.5 and 1.0, by the glass-ceramic technique. Using an analysis developed for non-isothermal crystallization studies, information on some aspects of crystallization temperature and thermal properties has been obtained. The crystallization studies were made using DTA with several uniform rates. The calculations of crystallization activation energies, Ea, and the Avrami parameters, n, were made based on the non-isothermal kinetic theory of Kissinger and the Ozawa’s equations. The DTA data of the samples showed that the first crystallization temperature, Tx1, increases and the second crystallization temperature, Tx2, decreases by increasing the Er concentration. This suggests that the Er substitution had significant effect on the glassification of the BSCCO material due to change on the surface nucleation and increased ionic activities at high temperature region. The activation energy for crystallization, Ea, of the samples was also showed an increase at high Er concentration case. However, the Avrami parameter, n, decreased from 2.5 to 1.7 for x=0.5 and 1.0 samples, respectively. This suggests that the growth mechanism is diffusion-controlled and three-dimensional parabolic growth takes place near the first crystallization temperature. The oxidization rates and the activation barrier for oxygen out-diffusion process, E, was calculated using the TG data. It was found that the total mass gain in the x=0.5 sample is comparably smaller than that of the x=1.0 sample. This shows that the oxygen absorption of the x=1.0 sample is faster than the x=0.5 sample, leading to increase in the oxidization rate in the x=1.0 material.  相似文献   

11.
The cationic part of the homodifunctional amino­phospho­ranyl ligand, C41H41N2P2+·I?, shows interesting features associated with the N—P—C—P—N skeleton. The P—C(H) bond distances [1.696 (3) and 1.697 (3) Å] possess partial double‐bond characteristics. The nature of the P—C(H) and P—N bonds suggests that the positive charge is only distributed around the P—C—P atoms. The structure has near twofold symmetry through the central methyl­ide‐C atom.  相似文献   

12.
Thermal and chemical durability studies of the phosphate glasses belonging to the binary MoO3-P2O5 and the ternary K2O-MoO3-P2O5 systems are reported. The chemical resistant attack tests carried out on the free alkaline MoO3-P2O5 glasses show that the glass associated with the P/Mo ratio 2 has the high chemical durability. It shows also a high glass transition temperature value. The above findings are interpreted in terms of the cross-link density of the glasses and the strength of the M-O bonds (M=P, Mo). The influence of K2O addition on the properties (density, T g, durability) of this binary high water resistant glass is studied. It is found that the chemical durability along with the other physical properties are reduced by the incroporation of K2O in the glass matrix. The results were explained by assuming the formation of non-bridging oxygens and weak bonds. The mechanism of the dissolution of these glasses is proposed.  相似文献   

13.
Phase equilibria in the three-component systems LiBr-LiVO3-Li2MoO4 and LiBr-Li2SO4-Li2MoO4 have been studied using differential thermal analysis (DTA). Eutectic compositions have been determined (mol %): in the system LiBr-LiVO3-Li2MoO4, 56.0 LiBr, 22.0 LiVO3, and 22.0 Li2MoO4 with a melting temperature of 413°C; and in the system LiBr-Li2SO4-Li2MoO4, 65.0 LiBr, 14.0 Li2SO4, and 21.0 Li2MoO4 with a melting temperature of 421°C. Phase fields have been demarcated.  相似文献   

14.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

15.
The title compound, C13H9NO, crystallizes with four mol­ecules in the asymmetric unit. Each of the four crystallographically independent mol­ecules forms a chain parallel to the a axis with symmetry‐equivalent mol­ecules. These chains are held together by similar O—H·NC hydrogen bonds, with approximately linear O—H·N angles and significantly bent H·N—C angles. The four different mol­ecules are related by strong elements of pseudosymmetry. To better describe the pseudosymmetry, the structure has been reported in the non‐standard space group .  相似文献   

16.
Ethyl­tri­phenyl­phospho­nium perrhenate, (C20H20P)[ReO4], and (iodo­methyl)­tri­phenyl­phospho­nium perrhenate, (C19H17IP)[ReO4], have been crystallized from 2‐propanol. Both crystal structures consist of phospho­nium cations and perrhenate anions. The cations show the typical propeller‐like geometry. In both crystals, the positions of the nearly tetrahedral anions are stabilized by weak C—H⋯O hydrogen bonds, and for the latter compound, I⋯π interactions also occur.  相似文献   

17.
Phase equilibria in the LiF-LiCl-LiVO3-Li2SO4-Li2MoO4 system have been studied by differential thermal analysis. The eutectic composition has been determined as follows (mol %): LiF, 17.4; LiCl, 42.0; LiVO3, 17.4; Li2SO4, 11.6; and Li2MoO4, 11.6, with the melting temperature equal to 363°C and the enthalpy of melting equal to (284 ± 7) kJ/kg.  相似文献   

18.
At 160 K, the gluco­pyran­osyl ring of the title compound, C20H28ClIO13, has a near‐ideal 4C1 conformation and the fructo­furan­osyl ring has a twist 4T3 conformation. The two hydroxy groups are involved in intra‐ and intermolecular hydrogen bonds, with the latter interactions linking the mol­ecules into infinite one‐dimensional chains. The absolute configuration of the mol­ecule has been determined.  相似文献   

19.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

20.
The structure of the title compound, (C5H12N)4[V10O26(CH3O)2], reveals the presence of four protonated piperidin­ium cations and a [{V10O26}(OCH3)2]4− polyanion having an embedded centre of inversion. The compound is distinguished by presenting, in contrast with other anionic deca­vanadates, two meth­oxy groups bridging the outermost V atoms, and it becomes the first example of this type among reported deca­vanadates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号