首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Self‐assembling molecular systems often display amplified chirality compared to the monomeric state, which makes the molecular recognition more sensitive to chiral analytes. Herein, we report the almost absolute enantioselective recognition of a chiral perylenediimide (PDI) molecule by chiral supramolecular nanofibers of a bichromophoric naphthalenediimide (NDI) derivative. The chiral recognition was evaluated through the Förster resonance energy transfer (FRET) from the NDI‐based host nanofibers to the guest PDI molecules. The excitation energy was successfully transferred to the guest molecule through efficient energy migration along the host nanofiber, thus demonstrating the light‐harvesting capability of these hybrid systems. Furthermore, circularly polarized luminescence (CPL) was enantioselectively sensitized by the guest molecule as the wavelength band and sign of the CPL signal were switched in response to the chiral guest molecule.  相似文献   

2.
Temperature‐dependent dual fluorescence and switchable circularly polarized luminescence (CPL) are two highly pursued but challenging properties for small organic molecules (SOMs). We herein disclose a triarylborane π‐system based on a 2,2′‐diamino‐6,6′‐diboryl‐1,1′‐binaphthyl scaffold that can serve as a versatile building block for achieving these two properties by simply choosing different amino groups. BNMe2‐BNaph with less bulky dimethylamino groups displays temperature‐dependent dual fluorescence, and can thus be used as a highly sensitive ratiometric fluorescence thermometer. On the other hand, BNPh2‐BNaph with bulky diphenylamino groups exhibits intense fluorescence in both solution and in the solid state. A change of solvent from nonpolar cyclohexane to highly polar MeCN not only shifts the CPL position to much longer wavelength but also inverts the CPL sign. In addition, the complexation of BNPh2‐BNaph with fluoride greatly enhances the CPL intensity.  相似文献   

3.
Reactions between the U‐shaped binuclear CuI complex A that bears short metal–metal distances and the cyano‐capped monotopic π‐conjugated ligands 1 – 5 that carry gradually bulkier polyaromatic terminal fragments lead to the formation of π‐stacked supramolecular assemblies 6 – 10 , respectively, in yields of 50–80 %. These derivatives have been characterized by multinuclear NMR spectroscopic analysis and X‐ray diffraction studies. Their solid‐state structures show the selective formation of U‐shaped supramolecular assemblies in which two monotopic π‐conjugated systems present large ( 6 , 7 , and 9 ) or medium ( 8 and 10 ) intramolecular π overlap, thus revealing π–π interactions. These assemblies self‐organize into head‐to‐tail π‐stacked dimers that in turn self‐assemble to afford infinite columnar π stacks. The nature, extent, and complexity of the intermolecular contacts within the head‐to‐tail π‐stacked dimer depend on the nature of the terminal polyaromatic fragment carried by the cyano‐capped monotopic ligand, but it does not alter the result of the self‐assembling process. These results demonstrate that the dinuclear molecular clip A that bears short metal–metal distances allows selective supramolecular assembly processes driven by the formation of intra‐ and intermolecular short π–π interactions in the resulting self‐assembled structures; thus, demonstrating that their shape is not only dictated by the symmetry of the building blocks. This approach opens perspectives toward the formation of extended π‐stacked columns based on dissymmetrical and functional π‐conjugated systems.  相似文献   

4.
Four chiral 1,2‐diaminocyclohexane (DACH)‐based molecules (R,R/S,S‐ 2 and R,R/S,S‐ 4 ) incorporating 1,8‐naphthalimide fluorophores exhibit strong circularly polarized luminescence (CPL) emission signals in common organic solvents. Interestingly, the reversed CPL signals can be observed in the aggregated state, which is due to the orderly aggregation.  相似文献   

5.
Herein, we summarize the synthetic approaches that have been developed for the synthesis of star‐shaped molecules. Typically, to design such highly functionalized molecules, simple building blocks are first assembled through trimerization reactions, starting from commercially available starting materials. Then, these building blocks are synthetically manipulated to generate extended star‐shaped molecules. We also discuss the syntheses of star‐shaped molecules that contain 2,4,6‐trisubstituted 1,3,5‐triazine or 1,3,5‐trisubstituted benzene rings as a central core and diverse substituted styrene, phenyl, and fluorene derivatives at their periphery, which endows these molecules with extended conjugation. A variety of metal‐catalyzed reactions, such as Suzuki, Buchwald–Hartwig, Sonogashira, Heck, and Negishi cross‐coupling reactions, as well as metathesis, have been employed to functionalize a range of star‐shaped molecules. The methods described herein will be helpful for designing a wide range of intricate compounds that are highly valuable in the fields of supramolecular chemistry and materials science. Owing to space limitations, we will not cover all of the publications on this topic. Instead, we will focus on examples that were reported by our research group and other relevant recent literature. Apart from the trimerization sequence, this Minireview has been structured based on the key reactions that were used to prepare the star‐shaped molecules and other higher analogues. Finally, some examples that do not fit into this classification are discussed.  相似文献   

6.
Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3-symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines.  相似文献   

7.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π‐conjugated carboxylic acids in pure aqueous solution. Under what we have termed an “interaction–substitution” mechanism, we generated chiral homoaggregates of a variety of π‐conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton‐coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π‐conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen‐bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen‐bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this “interaction–substitution” procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

8.
Determination of the absolute configuration (AC) of chiral molecules is a key issue in many fields related to chirality such as drug development, the asymmetric reaction screening, and the structure determination of natural compounds. Although various methods, such as X‐ray crystallography and NMR spectroscopy, are used to determine the AC, a simple and cheap alternative method is always anticipated. So far, electronic circular dichroism (ECD) spectroscopy has been widely used to ascertain the AC and enantiomeric excess (ee) values by applying appropriate organic probes. Here, circularly polarized luminescence (CPL) spectroscopy was applied to determine the AC and ee values of a series of amino acid and amino alcohol. The measurements were conducted by mixing the amino acids or amino alcohols with an achiral 1‐hydroxy‐2‐naphthaldehyde. Upon in situ formation of the Schiff base complexes, the system showed emission enhancement and CPL in the presence of Al3+, whose intensity and sign can be used to assign the chiral sense of the amino acids and amino alcohols. The authenticity of the method was further compared with the established CD spectroscopy, revealing that CPL spectra of formed Al3+ complex were effective to determine the AC of chiral species.  相似文献   

9.
We prepared enantiomers of chiral PtII complexes, Pt(pppb)Cl and Pt(pppb)CN (pppbH=1‐pyridyl‐3‐(4,5‐pinenopyridyl)benzene), and measured their CPL (circularly polarized luminescence) spectra for excimer and trimer emission. The contribution of the pinene moiety to CPL was considerably low for the π–π* emission of the monomer but large for MMLCT (metal‐metal‐to‐ligand charge‐transfer) of the excimer and trimer which had a helical structure induced in a face‐to‐face stacking fashion. The trimer CPL for (+)‐Pt(pppb)Cl was larger in intensity than that of excimer CPL; on the other hand, that for (+)‐Pt(pppb)CN was opposite in sign compared with that of excimer CPL. We conclude that differences in the excited‐state structure of the aggregate between Pt(pppb)Cl and Pt(pppb)CN account for the variation in the CPL spectra. By the aid of TD‐DFT calculations it was predicted that the dihedral angle θ(Cl‐Pt‐Pt‐Cl) was 50–60° or 110–140° for Pt(pppb)Cl aggregates and 160° for Pt(pppb)CN aggregates.  相似文献   

10.
The solution‐dispersed‐state and polymer‐dispersed‐state circular dichroism (CD) and circularly polarized luminescence (CPL) properties of chiral binaphthyl fluorophores could be controlled by the choice of open‐ or closed‐type substituents on the binaphthyl units and by the axial chirality of the binaphthyls.  相似文献   

11.
Optically active X-shaped molecules based on the planar chiral [2.2]paracyclophane building block were prepared, in which di(methoxy)terphenyl units were stacked on the central benzene rings. At 25 °C, anisolyl rings freely rotate in solution, while in the crystal form, they are fixed by intramolecular CH–π interactions, thereby leading to the expression of the axial chirality, i.e., propeller chirality was exhibited by the planar chiral [2.2]paracyclophane moiety. The X-shaped molecule exhibited good circularly polarized luminescence (CPL) profiles with moderate ΦPL and a large glum value in the order of 10−3 at 25 °C, in solution. In contrast, at −120 °C, dual CPL emission with opposite signs was observed. According to the theoretical studies, the rotary motion of the anisolyl units is suppressed in the excited states, and so emission from two isomers could be observed. These results demonstrate that the axial chirality was controlled by the planar chirality, leading ultimately to propeller chirality.  相似文献   

12.
New types of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes were synthesized from racemic 4,12‐dihydroxy[2.2]paracyclophane as the starting compound. Regioselective dibromination and transformation afforded a series of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes, which can be used as chiral building blocks. In this study, left‐ and right‐handed double helical structures were constructed via chemoselective Sonogashira–Hagihara coupling. The double helical compounds were excellent circularly polarized luminescence (CPL) emitters with large molar extinction coefficients, good photoluminescence quantum efficiencies, and large CPL dissymmetry factors.  相似文献   

13.
Two new tris(aryl)phosphane oxides existing as configurationally stable residual enantiomers have been synthesised and their racemates resolved by semipreparative HPLC on a chiral stationary phase (CSP HPLC). One of them, recognised as a conglomerate, could be resolved by fractional crystallisation at a preparative scale level. In this case, the absolute configuration of the propeller‐shaped molecule was determined by anomalous X‐ray scattering. The problem of the correlative assignment of the absolute configuration to all known C3‐symmetric three‐bladed propeller‐shaped molecules existing as stable residual enantiomers is discussed. The configurational stability of the new chiral phosphane oxides and of the corresponding phosphanes was evaluated by CD signal decay kinetics and dynamic 1H NMR spectroscopy. The racemisation barriers in phosphanes were found about 10 kcal mol?1 lower than those found for the corresponding oxides, though geometry and inter‐ring gearing would be very similar in the two series. Configurational stability of residual tris(aryl)phosphanes was found to be influenced by the electronic availability of the phosphorus centre, as evaluated by electrochemical CV experiments.  相似文献   

14.
The synthesis of chiral C1‐symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10?3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL‐emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

15.
Circularly polarized luminescence (CPL) was observed in pyrene zipper arrays helically arranged on an RNA duplex. Hybridization of complementary RNA strands having multiple (two to five) 2′‐O‐pyrenylmethyl modified nucleosides affords an RNA duplex with normal thermal stability. The pyrene fluorophores are assembled like a zipper in a well‐defined helical manner along the axis of RNA duplex, which, upon 350 nm UV illumination, resulted in CPL emission with pyrene excimer formation. CPL (glum) levels observed for the pyrene arrays in dilute aqueous solution were +2×10?2–+3.5×10?2, which are comparable with |glum| for chiral organic molecules and related systems. The positive CPL signals are consistent with a right‐handed helical structure. Temperature dependence on CPL emission indicates that the stable rigid RNA structure is responsible for the strong CPL signals. The single pyrene‐modified RNA duplex did not show any CPL signal.  相似文献   

16.
Anion‐responsive π‐conjugated compounds having chiral alkyl chains were synthesized. Circular dichroism (CD) and circularly polarized luminescence (CPL) were observed in the solution‐state assemblies of the chiral anion receptors and those of their anion complexes as salts of a planar triazatriangulenium cation. The CD and CPL spectral patterns of the ion‐pair‐based assemblies were completely opposite to those of the anion‐free assemblies, and this suggests that anion binding and subsequent ion pairing change the chirality of the assembly modes.  相似文献   

17.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

18.
Understanding electron transport through a single molecule bridging between metal electrodes is a central issue in the field of molecular electronics. This review covers the fabrication and electron‐transport properties of single π‐conjugated molecule junctions, which include benzene, fullerene, and π‐stacked molecules. The metal/molecule interface plays a decisive role in determining the stability and conductivity of single‐molecule junctions. The effect of the metal–molecule contact on the conductance of the single π‐conjugated molecule junction is reviewed. The characterization of the single benzene molecule junction is also discussed using inelastic electron tunneling spectroscopy and shot noise. Finally, electron transport through the π‐stacked system using π‐stacked aromatic molecules enclosed within self‐assembled coordination cages is reviewed. The electron transport in the π‐stacked systems is found to be efficient at the single‐molecule level, thus providing insight into the design of conductive materials.  相似文献   

19.
[2.2]paracyclophane (pCp), unlike many π‐building blocks, has been virtually unexplored in supramolecular constructs. Reported here is the synthesis and characterization of the first pCp derivatives capable of programmed self‐assembly into extended cofacial π‐stacks in solution and the solid state. The design employs transannular (intramolecular) hydrogen bonds (H‐bonds), hitherto unstudied in pCps, between pseudo‐ortho‐positioned amides of a pCp‐4,7,12,15‐tetracarboxamide (pCpTA) to preorganize the molecules for intermolecular H‐bonding with π‐stacked neighbors. X‐ray crystallography confirms the formation of homochiral, one‐dimensional pCpTA stacks helically laced with two H‐bond strands. The chiral sense is dictated by the planar chirality (Rp or Sp) of the pCpTA monomers. A combination of NMR, IR, and UV/Vis studies confirms the formation of the first supramolecular pCp polymers in solution.  相似文献   

20.
Short peptide helices have attracted attention as suitable building blocks for soft functional materials, but they are rarely seen in crystalline materials. A new artificial nanoassembly of short peptide helices in the crystalline state is presented in which peptide helices are arranged three‐dimensionally by metal coordination. The folding and assembly processes of a short peptide ligand containing the Gly‐Pro‐Pro sequence were induced by silver(I) coordination in aqueous alcohol, and gave rise to a single crystal composed of polyproline II helices. Crystallographic studies revealed that this material possesses two types of unique helical nanochannel; the larger channel measures more than 2 nm in diameter. Guest uptake properties were investigated by soaking the crystals in polar solutions of guest molecules; anions, organic chiral molecules, and bio‐oligomers are effectively encapsulated by this peptide‐folded porous crystal, with moderate to high chiral recognition for chiral molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号