首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

2.
Mononuclear [Fe(H2LR)2]X2 (R = H, 2-Me, 5-Me, 2-Et-5-Me; X = ClO4, BF4) and dinuclear [Fe2(H2LR)3]X4 complexes containing imidazole-4-carbaldehyde azine (H2LH) and its derivatives prepared by condensation of 4-formylimidazole, 2-methyl- or 5-methyl-4-formylimidazole, or 2-ethyl-4-methyl-5-formylimidazole, with hydrazine in a 2:1 mole ratio in methanol, were prepared and their magnetostructural relationships were studied. In the mononuclear complexes, H2LR acts as an unsymmetrical tridentate ligand with two imidazole nitrogen atoms and one azine nitrogen atom, while in the dinuclear complexes, H2LR acts as a dinucleating ligand employing four nitrogen atoms to form a triple helicate structure. At room temperature, [Fe2(H2LH)3](ClO4)4 and [Fe2(H2L2-Me)3](ClO4)4 were in the high-spin (HS) and low-spin (LS) states, respectively. The results are in accordance with the ligand field strength of H2L2-Me with electron-donating methyl groups being stronger than H2LH, with the order of the ligand field strengths being H2L2-Me > H2LH. However, in the mononuclear [Fe(H2LH)2](ClO4)2 and [Fe(H2L2-Me)2](ClO4)2 complexes, a different order of ligand field strengths, H2LH > H2L2-Me, was observed because [Fe(H2LH)2](ClO4)2 was in the LS state while [Fe(H2L2-Me)2](ClO4)2 was in the HS state at room temperature. X-ray structural studies revealed that the interligand steric repulsion between a methyl group of an H2L2-Me ligand and the other ligand in [Fe(H2L2-Me)2](ClO4)2 is responsible for the observed change in the spin state. The same is true for [Fe(H2L2-Et-5-Me)2](ClO4)2, while [Fe(H2L5-Me)2](ClO4)2 does not involve such a steric congestion and stays in the LS state over the temperature range 5–300 K. Two kinds of crystals (polymorphs) were isolated for [Fe2(H2LH)3](BF4)4 and [Fe2(H2L2-Et-5-Me)3](ClO4)4, and they exhibited different magnetic behaviors.  相似文献   

3.
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 ( 1A ), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] ( 1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl ( 1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], ( 1D ), and (TEA)[FeIII(L)2], ( 1E ) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.  相似文献   

4.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

5.
Alkynyl gold(I) metallaligands [(AuC≡Cbpyl)2(μ‐diphosphine)] (bpyl=2,2′‐bipyridin‐5‐yl; diphosphine=Ph2P(CH2)nPPh2, [n=3 (LPr), 4 (LBu), 5 (LPent), 6 (LHex)], dppf (LFc), Binap (LBinap) and Diop (LDiop)) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give triple helicates [M2(LR)3]X4. These complexes, except those containing the semirigid LBinap metallaligand, present similar hydrodynamic radii (determined by diffusion NMR spectroscopy measurements) and a similar pattern in the aromatic region of their 1H NMR spectra, which suggests that in solution they adopt a compact structure where the long and flexible organometallic strands are folded. The diastereoselectivity of the self‐assembly process was studied by using chiral metallaligands, and the absolute configuration of the iron(II) complexes with LBinap and LDiop was determined by circular dichroism spectroscopy (CD). Thus, (R)‐LBinap or (S)‐LBinap specifically induce the formation of (Δ,Δ)‐[Fe2((R)‐LBinap)3](ClO4)4 or (Λ,Λ)‐[Fe2((S)‐LBinap)3](ClO4)4, respectively, whereas (R,R)‐ or (S,S)‐LDiop give mixtures of the ΔΔ‐ and ΛΛ‐diastereomers. The ΔΔ helicate diastereomer is dominant in the reaction of FeII with (R,R)‐LDiop, whereas the ΛΛ isomer predominates in the analogous reaction with (S,S)‐LDiop. The photophysical properties of the new dinuclear alkynyl complexes and the helicates have been studied. The new metallaligands and the [Zn2(LR)3]4+ helicates present luminescence from [π→π*] excited states mainly located in the C≡Cbpyl units.  相似文献   

6.
7.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

8.
An iron(III)–catecholate complex [L1FeIII(DBC)] ( 2 ) and an iron(II)–o‐aminophenolate complex [L1FeII(HAP)] ( 3 ; where L1=tris(2‐pyridylthio)methanido anion, DBC=dianionic 3,5‐di‐tert‐butylcatecholate, and HAP=monoanionic 4,6‐di‐tert‐butyl‐2‐aminophenolate) have been synthesised from an iron(II)–acetonitrile complex [L1FeII(CH3CN)2](ClO4) ( 1 ). Complex 2 reacts with dioxygen to oxidatively cleave the aromatic C? C bond of DBC giving rise to selective extradiol cleavage products. Controlled chemical or electrochemical oxidation of 2 , on the other hand, forms an iron(III)–semiquinone radical complex [L1FeIII(SQ)](PF6) ( 2ox‐PF6 ; SQ=3,5‐di‐tert‐butylsemiquinonate). The iron(II)–o‐aminophenolate complex ( 3 ) reacts with dioxygen to afford an iron(III)–o‐iminosemiquinonato radical complex [L1FeIII(ISQ)](ClO4) ( 3ox‐ClO4 ; ISQ=4,6‐di‐tert‐butyl‐o‐iminobenzosemiquinonato radical) via an iron(III)–o‐amidophenolate intermediate species. Structural characterisations of 1 , 2 , 2ox and 3ox reveal the presence of a strong iron? carbon bonding interaction in all the complexes. The bond parameters of 2ox and 3ox clearly establish the radical nature of catecholate‐ and o‐aminophenolate‐derived ligand, respectively. The effect of iron? carbon bonding interaction on the dioxygen reactivity of biomimetic iron–catecholate and iron–o‐aminophenolate complexes is discussed.  相似文献   

9.
A new bis(pyrazolylpyridine) ligand (H2L) has been prepared to form functional [Fe2(H2L)3]4+ metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2(H2L)3]X(PF6)2?xCH3OH ( 1 , x=5.7 and X=Cl; 2 , x=4 and X=Br), X@[Fe2(H2L)3]X(PF6)2?yCH3OH?H2O ( 1 a , y=3 and X=Cl; 2 a , y=1 and X=Br) and X@[Fe2(H2L)3](I3)2?3 Et2O ( 1 b , X=Cl; 2 b , X=Br). Their structure and functional properties are described in detail by single‐crystal X‐ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2 , respectively, by a single‐crystal‐to‐single‐crystal mechanism. The three possible magnetic states, [LS–LS], [LS–HS], and [HS–HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the FeII centers. The nature of the guest (Cl? vs. Br?) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS–HS] or [HS–HS] states are generated through irradiation. All helicates (X@[Fe2(H2L)3])3+ persist in solution.  相似文献   

10.
Ferrocene‐amide‐functionalized 1,8‐naphthyridine (NP) based ligands {[(5,7‐dimethyl‐1,8‐naphthyridin‐2‐yl)amino]carbonyl}ferrocene (L1H) and {[(3‐phenyl‐1,8‐naphthyridin‐2‐yl)amino]carbonyl}ferrocene (L2H) have been synthesized. Room‐temperature treatment of both the ligands with Rh2(CH3COO)4 produced [Rh2(CH3COO)3(L1)] ( 1 ) and [Rh2(CH3COO)3(L2)] ( 2 ) as neutral complexes in which the ligands were deprotonated and bound in a tridentate fashion. The steric effect of the ortho‐methyl group in L1H and the inertness of the bridging carboxylate groups prevented the incorporation of the second ligand on the {RhII–RhII} unit. The use of the more labile Rh2(CF3COO)4 salt with L1H produced a cis bis‐adduct [Rh2(CF3COO)4(L1H)2] ( 3 ), whereas L2H resulted in a trans bis‐adduct [Rh2(CF3COO)3(L2)(L2H)] ( 4 ). Ligand L1H exhibits chelate binding in 3 and L2H forms a bridge‐chelate mode in 4 . Hydrogen‐bonding interactions between the amide hydrogen and carboxylate oxygen atoms play an important role in the formation of these complexes. In the absence of this hydrogen‐bonding interaction, both ligands bind axially as evident from the X‐ray structure of [Rh2(CH3COO)2(CH3CN)4(L2H)2](BF4)2 ( 6 ). However, the axial ligands reorganize at reflux into a bridge‐chelate coordination mode and produce [Rh2(CH3COO)2(CH3CN)2(L1H)](BF4)2 ( 5 ) and [Rh2(CH3COO)2(L2H)2](BF4)2 ( 7 ). Judicious selection of the dirhodium(II) precursors, choice of ligand, and adaptation of the correct reaction conditions affords 7 , which features hemilabile amide side arms that occupy sites trans to the Rh–Rh bond. Consequently, this compound exhibits higher catalytic activity for carbene insertion to the C?H bond of substituted indoles by using appropriate diazo compounds, whereas other compounds are far less reactive. Thus, this work demonstrates the utility of steric crowding, hemilability, and hydrogen‐bonding functionalities to govern the structure and catalytic efficacyof dirhodium(II,II) compounds.  相似文献   

11.
Tetrairon(III) single‐molecule magnets [Fe4(pPy)2(dpm)6] ( 1 ) (H3pPy=2‐(hydroxymethyl)‐2‐(pyridin‐4‐yl)propane‐1,3‐diol, Hdpm=dipivaloylmethane) have been deliberately organized into supramolecular chains by reaction with RuIIRuII or RuIIRuIII paddlewheel complexes. The products [Fe4(pPy)2(dpm)6][Ru2(OAc)4](BF4)x with x=0 ( 2 a ) or x=1 ( 2 b ) differ in the electron count on the paramagnetic diruthenium bridges and display hysteresis loops of substantially different shape. Owing to their large easy‐plane anisotropy, the s=1 diruthenium(II,II) units in 2 a act as effective seff=0 spins and lead to negligible intrachain communication. By contrast, the mixed‐valent bridges (s=3/2, seff=1/2) in 2 b introduce a significant exchange bias, with concomitant enhancement of the remnant magnetization. Our results suggest the possibility to use electron transfer to tune intermolecular communication in redox‐responsive arrays of SMMs.  相似文献   

12.
Mononuclear high‐spin [FeIII(Pyimpy)Cl3]?2 CH2Cl2 ( 1 ?2 CH2Cl2) and [FeIII(Me‐Pyimpy)Cl3] ( 2 ), as well as low‐spin FeII(Pyimpy)2](ClO4)2 ( 3 ) and [FeII(Me‐Pyimpy)2](ClO4)2 ( 4 ) complexes of tridentate ligands Pyimpy and Me‐Pyimpy have been synthesized and characterized by analytical techniques, spectral, and X‐ray structural analyses. We observed an important type of conversion and associated spontaneous reduction of mono‐chelated high‐spin FeIII ( 1 ?2 CH2Cl2 and 2 ) complexes to low‐spin bis‐chelated FeII complexes 3 and 4 , respectively. This process has been explored in detail by UV/Vis, fluorescence, and 1H NMR spectroscopic measurements. The high positive potentials observed in electrochemical studies suggested a better stabilization of FeII centers in 3 and 4 . Theoretical studies by density functional theory (DFT) calculations supported an increased stabilization for 3 in polar solvents. Self‐activated nuclease activity of complexes 1 ?2CH2Cl2 and 2 during their spontaneous reduction was examined for the first time and the mechanism of nuclease activity was investigated.  相似文献   

13.
Solvated iron(II)‐tris(bipyridine) ([FeII(bpy)3]2+) has been extensively studied with regard to the spin crossover (SCO) phenomenon. Herein, the ultrafast spin transition dynamics of single crystal [FeII(bpy)3](PF6)2 was characterized for the first time using femtosecond transient absorption (TA) spectroscopy. The single crystal environment is of interest for experiments that probe the nuclear motions involved in the SCO transition, such as femtosecond X‐ray and electron diffraction. We found that the TA at early times is very similar to what has been reported in solvated [FeII(bpy)3]2+, whereas the later dynamics are perturbed in the crystal environment. The lifetime of the high‐spin state is found to be much shorter (100 ps) than in solution due to chemical pressure exerted by the lattice. Oscillatory behavior was observed on both time scales. Our results show that single crystal [FeII(bpy)3](PF6)2 serves as an excellent model system for localized molecular spin transitions.  相似文献   

14.
The catecholase activity of the dicopper(II) complexes [Cu2(L1)(μ‐OCH3)(NCCH3)2](PF6)2·H2O·CH3CN ( 1 ), [Cu2(L2)(μ‐OH)(MeOH)(NCCH3)](BF4)2 ( 2 ), [Cu2(L3)(μ‐OMe)(NCCH3)2](BF4)2·2CH3CN·H2O ( 3 ), [Cu2(L2)(μ‐OAc)2]BF4·H2O ( 4 ), [Cu2(L4)(μ‐OAc)2]ClO4 ( 5 ) and [Cu2(L5)(μ‐OMe)(NCCH3)3(OH2)](ClO4)2·2CH3OH·CH3CN ( 6 ) consisting of varying para‐substituted phenol ligands HL1 = 4‐trifluoromethyl‐2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)phenol, HL2 = 4‐bromo‐2,6‐bis((4‐methyl‐1,4‐diazepan‐1‐yl)methyl)phenol, HL3 = 4‐bromo‐2‐((4‐methyl‐1,4‐diazepan‐1‐yl)methyl)‐6‐((4‐methylpiperazin‐1‐yl)methyl)phenol, HL4 = 2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)‐4‐nitrophenol and HL5 = 4‐tert‐butyl‐2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)phenol was studied. The main difference within the six complexes lies in the individual copper–copper separation that is enforced by the chelating side arms of the phenolate ligand entity and more importantly in the exogenous bridging solvent, hydroxide, methanolate or acetate ions. The distance between the copper cores varies from 2.94Å in 1 to 3.29Å in 5 . The catalytic activity of the complexes 1 – 6 towards the oxidation of 3,5‐di‐tert‐butylcatechol was determined spectrophotometrically by monitoring the increase of the 3,5–di‐tert‐butylquinone characteristic absorption band at about 400 nm over time saturated with O2. The complexes are able to oxidize the substrate 3,5‐di‐tert‐butylcatechol to the corresponding o‐quinone with distinct catalytic activity (kcat between 92 h?1 and 189 h?1), with an order of decreasing activity 6 > 5 > 1 , 2 , 4 ≥ 3 . A kinetic treatment of the data based on the Michaelis‐Menten approach was applied. A correlation of the catecholase activities with the variation of the para‐ substituents as well as other effects resulting from the copper core distances is discussed. [Cu2(L5)(μ‐OMe)(NCCH3)3(OH)2](ClO4)2·2CH3OH·CH3CN ( 6 ) exhibited the highest activity of the six complexes as a result of its high turnover rate.  相似文献   

15.
The pyridine‐2‐carbaldehyde semicarbazone ligand (HL) reacts with iron(II) and copper(II) perchlorates in boiling ethanol to yield red‐violet [FeII(HL)2](ClO4)2·H2O ( 1 ) and light‐green crystals [CuII(HL)2](ClO4)2·H2O ( 2 ). The crystals are triclinic with the metal ions in an octahedral environment, coordinated to two nitrogen and one oxygen‐donor atom from HL. Electronic, magnetic and electrochemical properties are presented as well.  相似文献   

16.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

17.
A series of dicarbene‐bridged metallacycles [Ag2( 1 )2](PF6)2, [Ag2( 2 )2](BF4)2, [Ag2( 3 )2](PF6)2, [Ag2( 7 )2](BF4)2, [Ag2( 8 )2](BF4)2 and [Ag2( 11 )2](PF6)2 were obtained in high yields via the reactions of 1,2,4‐triazole‐, 1,2,3‐triazole‐ and imidazo[1,5‐a]pyridine‐based ligands with Ag2O in CH3CN. The C=C double bonds in all of the newly synthesized metallacycles went through [2 + 2] photodimerization under UV irradiation condition (λ = 365 nm, T = 298 K) yielding the dinuclear rctt‐cyclobutane‐silver(I) complexes [Ag2( 4 )](PF6)2, [Ag2( 5 )](BF4)2, [Ag2( 6 )](PF6)2, [Ag2( 9 )](BF4)2, [Ag2( 10 )](BF4)2 and [Ag2( 12 )](PF6)2, respectively with quantitative yields. Treatment of the these cyclobutane‐bridged silver(I) complexes with NH4Cl resulted in the exclusive formation of cyclobutane derivatives after removal of the silver(I) metal ions.  相似文献   

18.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

19.
Three isoskeletal tetranuclear coordination clusters with general formula [MII2DyIII2L4(EtOH)6](ClO4)2?2 EtOH, (M=Co, 1 ; M=Ni, 2 ) and [NiII2DyIII2L4Cl2(CH3CN)2]?2 CH3CN ( 3 ), have been synthesized and characterized. These air‐stable compounds, and in particular 3 , display efficient homogeneous catalytic behavior in the room‐temperature synthesis of trans‐4,5‐diaminocyclopent‐2‐enones from 2‐furaldehyde and primary or secondary amines under a non‐inert atmosphere.  相似文献   

20.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号