首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
meta‐ and para‐Phenylenediamine‐fused nickel(II) porphyrin dimers were synthesized by SNAr reaction of meso,β,β‐trichloro nickel(II) porphyrin with meta‐ and para‐phenylenediamines and subsequent Pd‐catalyzed intramolecular C?H arylation. Their tetrachlorinated dication diradicals are very stable, allowing SQUID magnetometry and revealing clear open‐shell characters for both meta and para isomers with ferro‐ and anti‐ferromagnetic interactions, respectively. The nitrogen analogue of Thiele's hydrocarbon usually displays predominant closed‐shell nature but its hidden diradical characters increase either in a twisted conformation or upon insertion of an additional phenylene spacer. The observed distinct diradical nature of the para‐congener indicates that diradical properties can be enhanced also by efficient spin delocalization.  相似文献   

2.
A coiled structure of meso‐pentafluorophenyl‐substituted [62]tetradecaphyrin 1 was revealed by X‐ray structural analysis. Synthetic protocols were devised to form mono‐ and bis‐ZnII complexes, 1 Zn and 1 Zn2 , selectively. The former displayed a trigonal‐bipyramidal pentacoordinated ZnII ion as a rare case and a cyclic voltammogram exhibiting eleven reversible redox waves. The latter showed a Ci‐symmetric structure with modest Hückel aromaticity owing to a 62 π‐electronic circuit as the largest aromatic molecule to date.  相似文献   

3.
From the viewpoint of parameta topological bridging effect on the electronic coupling in organic mixed‐valence (MV) systems, the optically induced and thermally assisted intramolecular charge/spin transfer (ICT/IST) processes have been investigated for three bis(triarylamine) (BTA) radical cations as missing key compounds in very basic BTA MV systems. In contrast to the case of p‐ and m‐dinitrobenzene radical anions, the difference in the strength of electronic coupling (V) was not so large for the present BTA MV radical cations, although they still fall within the paradigm of strong V for para‐linkage and weak V for meta‐linkage. Unexpectedly, it has been found that meta‐phenylenediamine radical cation has an electronic coupling comparable to those in the para‐conjugated BTA‐based MV species, and the ICT/IST rate exceeds the ESR time‐scale. This finding is very encouraging considering that sufficient electronic communication can be ensured even when the redox‐active centers are linked directly by the meta‐phenylene bridge, thus broadening the selection of π‐bridging units for molecule‐based optoelectronics.  相似文献   

4.
A benzene‐1,3,5‐triaminyl radical fused with three ZnII‐porphyrins was synthesized through a three‐fold oxidative fusion reaction of 1,3,5‐tris(ZnII‐porphyrinylamino)benzene followed by oxidation with PbO2 as key steps. This triaminyl radical has been shown to possess a quartet ground state with a doublet–quartet energy gap of 3.1 kJ mol?1 by superconducting quantum interference device (SQUID) studies. Despite its high‐spin nature, this triradical is remarkably stable, which allows its separation and recrystallization under ambient conditions. Moreover, this triradical can be stored as a solid for more than one year without serious deterioration. The high stability of the triradical is attributed to effective spin delocalization over the porphyrin segments and steric protection at the nitrogen centers and the porphyrin meso positions.  相似文献   

5.
New hybrid porphyrin tapes comprising meso‐3,5‐di‐tert‐butylphenyl‐substituted ZnII‐porphyrins ( D ) and meso‐pentafluorophenyl‐substituted ZnII‐porphyrins ( A ) were synthesized via cross‐condensation of meso‐formyl porphyrins 1 , 5 , and 9 with oligopyrromethanes 2 and 6 as key steps. These hybrid tapes exhibit improved solubilities and enhanced chemical stability as compared with original Dn porphyrin tapes, and all display remarkably coplanar structures favorable for π‐conjugation. The absorption spectrum of ADDA displays Q‐like bands at 1400 and 1657 nm with a vibronic structure characteristic of porphyrinoids. The cyclic voltammograms exhibited positively shifted oxidation and reduction waves in the order of DDD < DAD < ADA < AAA . Tetrameric tape ADDA displays five reversible waves in a narrow range of 1.13 V. Two‐photon absorption (TPA) measurement confirmed that the π‐conjugation path is extended from 12 to ADDA and the molecular polarizability of ADA is larger than that of AAA .  相似文献   

6.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   

7.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

8.
9.
Silylation of peripherally lithiated porphyrins with silyl electrophiles has realized the first synthesis of a series of directly silyl‐substituted porphyrins. The meso‐silyl group underwent facile protodesilylation, whereas the β‐silyl group was entirely compatible with standard work‐up and purification on silica gel. The meso‐silyl group caused larger substituent effects to the porphyrin compared with the β‐silyl group. Silylation of β‐lithiated porphyrins with 1,2‐dichlorodisilane furnished β‐to‐β disilane‐bridged porphyrin dimers. A doubly β‐to‐β disilane‐bridged NiII‐porphyrin dimer was also synthesized from a β,β‐dilithiated NiII‐porphyrin and characterized by X‐ray crystallographic analysis to take a steplike structure favorable for interporphyrinic interaction. Denickelation of βsilylporphyrins was achieved upon treatment with a 4‐tolylmagnesium bromide to yield the corresponding freebase porphyrins.  相似文献   

10.
Our synthetic attempts for the preparation oligo‐ and polyporphyrin arrays were reviewed in comparison with recent accomplishment in the related field. Especially, the synthesis and structural characteristics of huge monodisperse meso‐meso linked porphyrin arrays with multidimensional architectures were focused. The AgI‐promoted meso‐meso coupling reaction of 5,15‐diaryl and 5,10,15‐triaryl ZnII‐porphyrins is advantageous in light of its high regioselectivity, as well as its easy extension to large porphyrin arrays. When applied to 1,4‐phenylene‐bridged linear porphyrin substrates, the coupling reaction gave three‐dimensionally arranged windmill‐shaped and grid‐shaped porphyrin arrays. The meso‐meso coupling doubling reaction was repeated up to the synthesis of a discrete 128‐mer. During these attempts, many porphyrin arrays were isolated in a discrete form by repetitive gel‐permeation chromatography and, interestingly, all the arrays exhibited high solubility in common organic solvents in spite of their giant molecular size. Furthermore, the AgI‐promoted coupling reaction was extended to the preparation of long polyporphyrinylenes under slightly modified conditions by either adding N,N‐dimethylacetamide (DMA) or heating slightly.  相似文献   

11.
Singly and doubly 1,2‐phenylene‐inserted NiII porphyrin arch‐tape dimers 3 and 9 were synthesized from the corresponding β‐to‐β 1,2‐phenylene‐bridged NiII porphyrin dimers 5 and 11 via Ni0‐mediated reductive cyclization and DDQ/Sc(OTf)3‐promoted oxidative cyclization as key steps, respectively. Owing to the fused eight‐membered ring(s), 3 showed a more contorted structure than those of previously reported arch‐tape dimers 2 a and 2 b possessing a fused seven‐membered ring. Furthermore, 9 displayed much larger molecular contortion. As the molecular contortion increases, the Q band of the absorption spectrum becomes more red‐shifted and the electrochemcial HOMO–LUMO gap becomes smaller, reaching at 1294 nm and 0.77 eV in 9 , respectively. The effect of molecular contortion on the electronic properties was studied by means of DFT calculations.  相似文献   

12.
We report the regiocontrolled syntheses of ethene‐bridged para‐phenylene oligomers in three distinct classes by using PtII‐ and RuII‐catalyzed aromatization. This synthetic approach has been developed based on twofold aromatization of the 1‐aryl‐2‐alkynylbenzene functionality, which proceeds by distinct regioselectivity for platinum and ruthenium catalysts. Variable‐temperature NMR spectra provide evidence that large arrays of these oligomers are prone to twist from planarity. The UV/Vis and photoluminescence (PL) spectra as well as the band gaps of these regularly growing arrays show a pattern of extensive π conjugation with increasing array sizes, except for in one instance.  相似文献   

13.
The self‐assembly properties of two ZnII porphyrin isomers on Cu(111) are studied at different coverage by means of scanning tunneling microscopy (STM). Both isomers are substituted in their meso‐positions by two voluminous 3,5‐di(tert‐butyl)phenyl and two rod‐like 4′‐cyanobiphenyl groups, respectively. In the trans‐isomer, the two 4′‐cyanobiphenyl groups are opposite to each other, whereas they are located at right angle in the cis‐isomer. For coverage up to one monolayer, the cis‐substituted porphyrins self‐assemble to form oligomeric macrocycles held together by antiparallel CN???CN dipolar interactions and CN???H‐C(sp2) hydrogen bonding. Cyclic trimers and tetramers occur most frequently but everything from cyclic dimers to hexamers can be observed. Upon annealing of the samples at temperatures >150 °C, dimeric macrocyclic structures are observed, in which the two porphyrins are bridged by Cu atoms, originating from the surface, under formation of two CN???Cu???NC coordination bonds. The trans‐isomer builds up linear chains on Cu(111) at low coverage, whereas for higher coverage the molecules assemble in a periodic, densely packed structure. Both cis‐ and trans‐bis(4′‐cyanobiphenyl)‐substituted ZnII porphyrins behave very differently on Cu(111) compared to similar porphyrins in literature on less reactive surfaces such as Au(111) and Ag(111). On the latter surfaces, there is no signal visible between molecular orientation and the crystal directions of the substrate, whereas on Cu(111), very strong adsorbate–substrate interactions have a dominating influence on all observed structures. This strong porphyrin–substrate interaction enables a much broader variety of structures, including also less favorable intermolecular bonding motifs and geometries.  相似文献   

14.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

15.
The first examples of pyrrole‐ and thiophene‐bridged 5,15‐diazaporphyrin (DAP) dimers are prepared through Stille coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl) with the respective 2,5‐bis(tributylstannyl)heteroles. The effects of the heterole spacers and meso nitrogen atoms on the optical, electrochemical, and magnetic properties of the DAP dimers are investigated by UV/Vis absorption spectroscopy, density functional theory calculations, magnetic circular dichroism spectroscopy, cyclic voltammetry, and EPR spectroscopy. The heterole spacers are found to have a significant impact on the electronic transitions over the entire π‐system. In particular, the pyrrole‐bridged DAP dimers exhibit high light‐harvesting potential in the low‐energy visible/near‐infrared region owing to the intrinsic charge‐transfer character of the lowest excitation.  相似文献   

16.
Facile synthesis of meso‐aryl‐substituted 5,15‐dithiaporphyrins and 10‐thiacorroles has been achieved by sulfidation of α,α′‐dichlorodipyrrin metal complexes with sodium sulfide in DMF. Thiacorrole metal complexes exhibit distinct aromaticity due to 18 π‐conjugation including the lone pair on sulfur, whereas dithiaporphyrins are nonaromatic judging from 1H NMR spectra, X‐ray analysis, and absorption spectra. We have found that NiII and AlIII dithiaporphyrin complexes undergo smooth thermal sulfur extrusion reaction to give the corresponding thiacorrole complexes, whereas free base, ZnII, PdII, and PtII dithiaporphyrin complexes did not exhibit the similar reactivity. The DFT calculations have elucidated a reaction pathway involving an episulfide intermediate, which can explain the markedly different reactivity among dithiaporphyrin metal complexes.  相似文献   

17.
Alkynyl‐substituted 3H‐corrole 9 a was converted to [3]cumulenic 2H‐corrole 10 a by treatment with trimethylsilyl chloride (TMSCl), and 1,3‐butadiyne‐bridged 3H‐corrole dimer 11 b was transformed into [5]cumulene‐bridged 2H‐corrole dimer 12 b by oxidation with PbO2. Both 10 a and 12 b were metalated to form ZnII complexes 10 a‐Zn and 12 b‐Zn . The structures of 10 a‐Zn and 12 b‐Zn show planar conformations with bond‐length alternations that are analogous to those of tetraaryl [n]cumulenes. The cumulenic corrole dimers 12 b and 12 b‐Zn display large NIR absorption bands in the range of 700–1400 nm (maximum ϵ≈1.0×105 m −1 cm−1) owing to the effective π‐conjugation between the two corrole units through the [5]cumulene bridge.  相似文献   

18.
Hybrid porphyrin tapes 3 and 4 , consisting of a mixture of 3,5‐di‐tert‐butylphenyl‐substituted donor‐type ZnII–porphyrins and pentafluorophenyl‐substituted acceptor‐type ZnII–porphyrins, were prepared by a synthetic route involving cross‐condensation reaction of a NiII–porphyrinyldipyrromethane and pentafluorophenyldipyrromethane with pentafluorobenzaldehyde followed by appropriate demetalation, remetalation, and oxidative ring‐closure reaction. The NiII‐substituted porphyrin tapes 5 (Ni‐Zn‐Ni) and 6 (Ni‐H2‐Ni) were also prepared through similar routes. The hybrid porphyrin tapes 3 and 4 are more soluble and more stable than normal porphyrin tapes 1 and 2 consisting of only donor‐type ZnII–porphyrins. The solid‐state and crystal packing structures of 3 , 4 , and 5 were elucidated by single‐crystal X‐ray diffraction analysis. Singly mesomeso‐linked hybrid porphyrin arrays 12 and 14 exhibit redox potentials that roughly correspond to each constituent porphyrin segments, while the redox potentials of the hybrid porphyrin tapes 3 and 4 are positively shifted as a whole. The two‐photon absorption (TPA) values of 1–6 were measured by using a wavelength‐scanning open aperture Z‐scan method and found to be 1900, 21 000, 2200, 27 000, 24 000, and 26 000 GM, respectively. These results illustrate an important effect of elongation of π‐electron conjugation for the enhancement of TPA values. The hybrid porphyrin tapes show slightly larger TPA values than the parent ones.  相似文献   

19.
The synthesis and aggregation behavior of meso‐sulfinylporphyrins are described. The copper‐catalyzed C–S cross‐coupling reaction of a meso‐iodoporphyrin with benzenethiol and n‐octanethiol has proved to be an efficient method for the synthesis of meso‐sulfanylporphyrins, which are oxygenated by m‐chloroperbenzoic acid to produce the corresponding meso‐sulfinylporphyrins. Optically active zinc meso‐sulfinylporphyrins were successfully isolated by means of optical resolution of the racemates on a chiral HPLC column. Zinc sulfinylporphyrins readily undergo self‐organization through S–oxo–zinc coordination to form cofacial porphyrin dimers in solution, in which the hetero‐ and homodimers are present as a diastereomeric mixture. The aggregation modes of the S–oxo‐tethered porphyrin dimers were fully characterized by 1H NMR, IR, and UV/Vis spectroscopy as well as DFT calculations on their model compounds, thus revealing that the self‐aggregation behavior depends on the combination of S chirality. The absolute configurations at the sulfur center can be determined by the exciton‐coupled CD method. The observed self‐association constant for the S–oxo‐tethered dimerization of (S)‐phenylsulfinylporphyrin in toluene is larger than that in dichloromethane, which reflects the difference in dipole moments between the homodimer and the monomer. In cyclic and differential pulse voltammetry, the first oxidation process of the cofacial dimers is split into two reversible steps, which indicates that the initially produced π radical cations are delocalized efficiently between the two porphyrin rings. The present findings demonstrate the potential utility of meso‐sulfinyl groups as promising ligands for investigating the effects of peripheral chirality on the structures and optical and electrochemical properties of metal‐assisted porphyrin self‐assemblies.  相似文献   

20.
The redox and spin versatilities of manganese–porphyrin complexes [MnIIP] are examined to construct a redox‐switchable device. The electronic structure of [MnIIIP]+ was analyzed by using wavefunction‐based calculations (complete active spaces plus single excitations on top of the active spaces, that is, CAS+singles). A non‐negligible σ‐type electron‐transfer configuration is present in the [MnIIIP]+ S=2 ground state. By contrast, the [MnIIP.]+ valence tautomer is a purely π‐type intramolecular charge transfer, thus reflecting an S=3 spin state as a result of the strong ferromagnetic interaction (J=30 meV) between the S=5/2 MnII ion and the S=1/2 porphyrin radical cation P.+. The change of the redox‐sensitive site in the valence tautomer leads to a ‘triangular scheme’ that involves a critical step in which a simultaneous electron transfer and spin change are expected to induce bistability. From the wavefunction inspection, a meso‐substituted porphyrin candidate was designed to support this scenario. The complete active‐space second‐order perturbation theory (CASPT2) adiabatic energy difference between the S=2 and the S=3 spin states was reduced down to 0.15 eV, thereby giving rise to a metastable S=3 state characterized by a 0.10 Å extension of the porphyrin cavity radius. These results not only confirm the rather versatile nature of these inorganic systems but also demonstrate that redox and spin changes are intermingled in this class of compounds and can be used for applied devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号