首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, a simple strategy to change the emission behaviour of luminogenic materials was developed. Tetraphenylethene (TPE)‐functionalised benzothiazolium salts with different counteranions (TPEBe?X; X=I?, ClO4? and PF6?) were designed and synthesised. All the luminogens show weak red emission in the solution state that originates from intramolecular charge transfer from TPE to the benzothiazolium unit. Whereas aggregate formation enhances the light emission of TPEBe?ClO4 and TPEBe?PF6, that of TPEBe?I is quenched, thus demonstrating the phenomena of aggregation‐induced emission and aggregation‐caused quenching. TPEBe?I works as a light‐up fluorescent sensor for Hg2+ in aqueous solution with high sensitivity and specificity owing to the elimination of the emission quenching effect of the iodide ion by the formation of HgI2 as well as the induction in aggregate formation by the complexation of Hg2+ with the S atom of the benzothiazolium unit of TPEBe?I. A solid film of TPEBe?I was prepared that can monitor the level of Hg2+ in aqueous solution with a detection limit of 1 μM .  相似文献   

2.
A bilateral Schiff base is reported for the colorimetric and fluorometric dual‐channel sensing of Hg2+ ions by taking advantage of the hydrolysis of carbon‐nitrogen double bond, altering an ICT state mechanism and then Hg2+ ions coordinating with amino moieties of 1,5‐DAN and leading to the aggregation of 1,5‐DAN. Meanwhile, it formed a stable neutral complex of amino‐Hg‐amino. In addition, test strips based on L were fabricated, which also exhibited a good selectivity to Hg2+ as in solution. This work provides a novel approach for the selective recognition of mercury ions. Notably, the color changes are very significant and all the recognition processes can be observed by the naked eyes. We believe the test strips can act as a convenient and efficient Hg2+ test kit.  相似文献   

3.
A gold(I) complex that exhibited aggregation‐induced emission in acetonitrile‐water mixtures was designed. It showed high selectivity and sensitivity for Hg2+ in acetonitrile‐H2O (1:1, V:V) solution. Dynamic light scattering measurements were conducted to verify that the addition of Hg2+ changed the particle size and induced fluorescence quenching.  相似文献   

4.
A tetraphenylethene (TPE) derivative substituted with the electron‐acceptor 1,3‐indandione (IND) group was designed and prepared. The targeted IND‐TPE reserves the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, owing to the decorated IND moiety, IND‐TPE demonstrates intramolecular charge‐transfer process and pronounced solvatochromic behavior. When the solvent is changed from apolar toluene to highly polar acetonitrile, the emission peak redshifts from 543 to 597 nm. IND‐TPE solid samples show an evident mechanochromic process. Grinding of the as‐prepared powder sample induces a redshift of emission from green (peak at 515 nm) to orange (peak at 570 nm). The mechanochromic process is reversible in multiple grinding–thermal annealing and grinding–solvent‐fuming cycles, and the emission of the solid sample switches between orange (ground) and yellow (thermal/solvent‐fuming‐treated) colors. The mechanochromism is ascribed to the phase transition between amorphous and crystalline states. IND‐TPE undergoes a hydrolysis reaction in basic aqueous solution, thus the red‐orange emission can be quenched by OH? or other species that can induce the generation of sufficient OH?. Accordingly, IND‐TPE has been used to discriminatively detect arginine and lysine from other amino acids, due to their basic nature. The experimental data are satisfactory. Moreover, the hydrolyzation product of IND‐TPE is weakly emissive in the resultant mixture but becomes highly blue‐emissive after the illumination for a period by UV light. Thus IND‐TPE can be used as a dual‐responsive fluorescent probe, which may extend the application of TPE‐based molecular probes in chemical and biological categories.  相似文献   

5.
o‐Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o‐carborane units were found to show suppressed aggregation‐induced quenching and intense solid‐state emission; they also show potential for the development of stimuli‐responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation‐induced emission, twisted intramolecular charge transfer in crystals, and environment‐sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos‐, vapo‐, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o‐carborane derivatives.  相似文献   

6.
A high contrast tri‐state fluorescent switch (FSPTPE) with both emission color change and on/off switching is achieved in a single molecular system by fusing the aggregation‐induced emissive tetraphenylethene (TPE) with a molecular switch of spiropyran (SP). In contrast to most of the reported solid‐state fluorescent switches, FSPTPE only exists in the amorphous phase in the ring‐closed form owing to its highly asymmetric molecular geometry and weak intermolecular interactions, which leads to its grinding‐inert stable cyan emission in the solid state. Such an amorphous phase facilitates the fast response of FSPTPE to acidic gases and induces the structural transition from the ring‐closed form to ring‐open form, accompanied with the “Off” state of the fluorescence. The structural transition leads to a planar molecular conformation and high dipole moment, which further results in strong intermolecular interactions and good crystallinity, so when the acid is added together with a solvent, both the ring‐opening reaction and re‐crystallization can be triggered to result in an orange emissive state. The reversible control between any two of the three states (cyan/orange/dark) can be achieved with acid/base or mechanical force/solvent treatment. Because of the stable initial state and high color contrast (Δλ=120 nm for cyan/orange switch, dark state ΦF<0.01 %), the fluorescent switch is very promising for applications such as displays, chemical or mechanical sensing, and anti‐counterfeiting.  相似文献   

7.
2‐(2‐Hydroxy‐phenyl)‐4(3H)‐quinazolinone (HPQ), an organic fluorescent material that exhibits fluorescence by the excited‐state intramolecular proton‐transfer (ESIPT) mechanism, forms two different polymorphs in tetrahydrofuran. The conformational twist between the phenyl and quinazolinone rings of HPQ leads to different molecular packing in the solid state, giving structures that show solid‐state fluorescence at 497 and 511 nm. HPQ also shows intense fluorescence in dimethyl formamide (DMF) solution and selectively detects Zn2+ and Cd2+ ions at micromolar concentrations in DMF. Importantly, HPQ not only detects Zn2+ and Cd2+ ions selectively, but it also distinguishes between the metal ions with a fluorescence λmax that is blue‐shifted from 497 to 420 and 426 nm for Zn2+ and Cd2+ ions, respectively. Hence, tunable solid‐state fluorescence and selective metal‐ion‐sensor properties were demonstrated in a single organic material.  相似文献   

8.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

9.
A simple and nontoxic fluorescent chemosensor of di‐O‐methyl curcumin has been prepared from curcumin. The sensor exhibited selective and sensitive fluorescent responses toward Al3+ over a wide range of metal ions, such as Mn2+, Ce3+, Pt2+, Sn4+, Hg+, Sb3+, K+, Ca2+, Mg2+, Ba2+, Cu2+, Ni2+, Na+, NH4+, Ag+, Pb2+, Zn2+, Fe2+, Fe3+, Hg2+ and Cr3+ in ethanol/water. The free ligand showed quite weak fluorescence emission due to the isomerization of C?O double bond in the excited state, however, after addition of Al3+, fluorescence emission results in a prominent fluorescence enhancement.  相似文献   

10.
Highly selective and low‐cost optical nanosensors of organic–inorganic hybrid materials for heavy metal ions detection have been prepared via the functionalization of mesoporous silica (SBA‐16) with chalcone fluorescent chromophores. The successful attachment of organic chalcone moieties and preservation of original structure of SBA‐16 after the anchoring process were confirmed by extensive characterizations using various techniques like Fourier transform infrared and UV–visible spectroscopies, transmission electron microscopy, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analysis. The colorimetric behaviour, selectivity and sensitivity were also investigated. The optical nanosensors respond selectively to heavy metal ions, such as Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, with observable colour changes in 0.01 M Tris–HCl aqueous buffer solution. Also, the optical sensing ability of the investigated nanosensors to the mentioned metal ions was investigated using steady‐state absorption and emission techniques. Significant increase in the absorption spectra and a static quenching in the emission spectra are observed upon adding various concentrations of the studied metal ions. The spectral changes as well as the observable colour changes suggest that the investigated nanosensors are suitable for simple, economic, online analysis and remote design of these toxic metal ions with fast kinetic responses. Finally, the low detection limits for all the studied metals are in good agreement with those recommended by both the US Environmental Protection Agency and World Health Organization, except for Hg2+ and Cd2+, indicating that the investigated nanosensors have hypersensitivity, selectivity and better recognition for all the studied metal ions.  相似文献   

11.
A two‐dimensional barium(II) coordination polymer, [Ba(4‐FBA)2(4‐FBAH)]n (4‐FBA? = 4‐formylbenzoate), has been synthesized by the reaction of barium carbonate and 4‐formylbenzoic acid. The barium(II) ion is nine‐coordinated by eight O atoms from six deprotonated 4‐FBA? ligands and one O atom from the terminal 4‐FBAH ligand. Adjacent barium(II) ions are linked by the 4‐FBA? ligand to furnish a two‐dimensional lamellar structure which exhibits blue fluorescent emission in the solid state at room temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A new chemosensor for Cu2+ was synthesized based on 1,2,3,4,5,6,7,8,9,10‐decahydroacridine‐1,8‐dione dyes, which exhibited an obvious fluorescent selectivity to the sensing of Cu2+ ions over other cations, such as Na+, K+, Ca2+, Cd2+, Co2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Ag+ and Pb2+. Moreover, it presented a fluorescent switch function when EDTA was added to the compound‐Cu2+ complex in examined systems.  相似文献   

13.
We develop a highly effective silole‐infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe3+ and Hg2+ ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC’s stopband. The fluorescence can be quenched significantly by Fe3+/Hg2+ ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe3+/Hg2+ ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe3+/Hg2+ ions sensor based on HPS‐infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.  相似文献   

14.
A fluorescent self‐assembly of cephalexin is obtained by pulsed laser irradiation process. An intense fluorescence emission is found in the self‐assembled form due to occurrence of a typical aggregation‐induced emission in cephalexin molecules. It is observed that fluorescence quenching of the self‐assembled fluorescent nanostructures occurs in the presence of extremely low Hg++ ions concentrations (10?7 m ) as compared to other heavy metal ions e.g. Ferrous (Fe++), Manganese (Mn++), Magnesium (Mg++), Cobalt (Co++), Nickel (Ni++) and Zinc (Zn++) at the same concentrations.  相似文献   

15.
A novel conjugated asymmetric donor–acceptor (CADA) strategy for preventing the redshift in photoluminescence, as well as preserving the merits of donor–acceptor architectures, was proposed and demonstrated for two triazine derivatives, which showed highly efficient, narrow, and blueshifted ultraviolet light emission in solid films along with special aggregation‐induced emission behavior. A mechanism of aggregation‐induced locally excited‐state emission by suppressing the twisted intramolecular charge‐transfer emission for the spectacular optoelectronic phenomena of these CADA molecules was suggested on the basis of both experimental measurements and theoretical calculations. By taking advantage of this special CADA architecture, fluorescent probes based on aggregates of conjugated asymmetric triazines in THF/water for the detection of explosives show superamplified detection of picric acid with high quenching constants (>1.0×107 M ?1) and a low detection limit of 15 ppb.  相似文献   

16.
A turn-on fluorescent chemosensor strategy based on the change in the polarity of aggregation induced emission active tetraphenylethene is presented for the detection of Hg2+ in aqueous medium and in living cells. The sensing mechanism involves the formation of nonpolar fluorescent aggregates of tetraphenylethene molecules by elimination of polar moieties of TPE with Hg2+ interaction.  相似文献   

17.
A water‐soluble benzenesulfonamidoquinolino‐β‐cyclodextrin has been successfully synthesized in 30 % yield by incorporating a N‐(8‐quinolyl)‐p‐aminobenzenesulfonamide (HQAS) group to β‐cyclodextrin through a flexible linker. This compound exhibits a good fluorescence response in the presence of Zn2+ in water but gives poor fluorescence responses with other metal ions commonly present in a physiological environment under similar conditions. Fluorescence microscopic and two‐dimensional NMR experiments showed that benzenesulfonamidoquinolino‐β‐cyclodextrin could bind to the loose bilayer membranes. As a result, benzenesulfonamidoquinolino‐β‐cyclodextrin was found to act as an efficient cell‐impermeable Zn2+ probe, showing a specific fluorescent sensing ability to Zn2+‐containing damaged cells whilst exhibiting no response in the presence of healthy cells.  相似文献   

18.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

19.
The emission process of the o ‐carborane dyad with anthracene originating from the twisted intramolecular charge transfer (TICT) state in the crystalline state is described. The anthracene‐o ‐carborane dyad was synthesized and its optical properties were investigated. Initially, the dyad had aggregation‐ and crystallization‐induced emission enhancement (AIEE and CIEE) properties via the intramolecular charge transfer (ICT) state. Interestingly, the dyad presented the dual‐emissions assigned to both locally excited (LE) and ICT states in solution. From the mechanistic studies and computer calculations, it was indicated that the emission band from the ICT should be attributable to the TICT emission. Surprisingly, even in the crystalline state, the TICT emission was observed. It was proposed from that the compact sphere shape of o ‐carborane would allow for rotation even in the condensed state.  相似文献   

20.
The fluorescence properties of four derivatives of 3‐thienyl‐2‐(N‐dicyanovinyl)iminocoumarin, bearing a diethylamino group in the 7‐position or a methoxy group in the 6, 7 and 8 positions, were compared in solution and in the solid state. The 7‐diethylamino derivative was strongly fluorescent in various solvents, with marked solvatochromism. Its fluorescence was quenched by aggregation. In contrast, the methoxy derivatives were only moderately or weakly fluorescent in solution, but two of them were strongly photoluminescent in the crystalline state, owing to favourable molecular packing. The 6‐methoxy derivative even exhibited spectacular crystallization‐enhanced emission, examples of which are particularly rare for this type of dyes. Dyes were tested for biological use. The 7‐diethylamino derivative led to particularly strong fluorescence staining of the cytoplasm of HCT‐116 colon cancer cells. No fading was observed over prolonged illumination by the microscope light beam, but a phototoxic effect was detected. The use of the dyes as red‐emitting materials was also investigated. Using easy‐to‐implement preparation methods, the compounds self‐ assembled to give one‐dimensional nano‐ and microsized particles, including millimeter‐long microfibres that exhibited clear wave‐guiding properties. This study shows the value of these low molecular‐weight molecules for the preparation of new orange and red‐emitting fluorescent materials based on totally pure dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号